Mostrar el registro sencillo del ítem
dc.contributor.author
Zhang, Jin
dc.contributor.author
Feng, Fan
dc.contributor.author
Han, TianYi
dc.contributor.author
Duan, Feng
dc.contributor.author
Sun, Zhe
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2021-11-04T16:22:20Z
dc.date.issued
2021-08
dc.identifier.citation
Zhang, Jin; Feng, Fan; Han, TianYi; Duan, Feng; Sun, Zhe; et al.; A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification; Springer; Science China Technological Sciences; 64; 8-2021; 1863–1871
dc.identifier.issn
1674-7321
dc.identifier.uri
http://hdl.handle.net/11336/146028
dc.description.abstract
Gifted children are able to learn in a more advanced way than others, probably due to neurophysiological differences in the communication efficiency in neural pathways. Topological features contribute to understanding the correlation between the brain structure and intelligence. Despite decades of neuroscience research using MRI, methods based on brain region connectivity patterns are limited by MRI artifacts, which therefore leads to revisiting MRI morphometric features, with the aim of using them to directly identify gifted children instead of using brain connectivity. However, the small, high dimensional morphometric feature dataset with outliers makes the task of finding good classification models challenging. To this end, a hybrid method is proposed that combines tensor completion and feature selection methods to handle outliers and then select the discriminative features. The proposed method can achieve a classification accuracy of 93.1%, higher than other existing algorithms, which is thus suitable for the small MRI datasets with outliers in supervised classification scenarios.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Tensor completion
dc.subject
brain sciences
dc.subject
gifted children
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-11-04T13:18:21Z
dc.identifier.eissn
1869-1900
dc.journal.volume
64
dc.journal.pagination
1863–1871
dc.journal.pais
China
dc.description.fil
Fil: Zhang, Jin. Nankai University; China
dc.description.fil
Fil: Feng, Fan. Nankai University; China
dc.description.fil
Fil: Han, TianYi. Nankai University; China
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Sun, Zhe. Riken. Brain Science Institute; Japón
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Solé Casals, Jordi. Central University of Catalonia; España
dc.journal.title
Science China Technological Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11431-020-1876-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11431-020-1876-3
Archivos asociados