Mostrar el registro sencillo del ítem

dc.contributor.author
Zhang, Jin  
dc.contributor.author
Feng, Fan  
dc.contributor.author
Han, TianYi  
dc.contributor.author
Duan, Feng  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Solé Casals, Jordi  
dc.date.available
2021-11-04T16:22:20Z  
dc.date.issued
2021-08  
dc.identifier.citation
Zhang, Jin; Feng, Fan; Han, TianYi; Duan, Feng; Sun, Zhe; et al.; A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification; Springer; Science China Technological Sciences; 64; 8-2021; 1863–1871  
dc.identifier.issn
1674-7321  
dc.identifier.uri
http://hdl.handle.net/11336/146028  
dc.description.abstract
Gifted children are able to learn in a more advanced way than others, probably due to neurophysiological differences in the communication efficiency in neural pathways. Topological features contribute to understanding the correlation between the brain structure and intelligence. Despite decades of neuroscience research using MRI, methods based on brain region connectivity patterns are limited by MRI artifacts, which therefore leads to revisiting MRI morphometric features, with the aim of using them to directly identify gifted children instead of using brain connectivity. However, the small, high dimensional morphometric feature dataset with outliers makes the task of finding good classification models challenging. To this end, a hybrid method is proposed that combines tensor completion and feature selection methods to handle outliers and then select the discriminative features. The proposed method can achieve a classification accuracy of 93.1%, higher than other existing algorithms, which is thus suitable for the small MRI datasets with outliers in supervised classification scenarios.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tensor completion  
dc.subject
brain sciences  
dc.subject
gifted children  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-11-04T13:18:21Z  
dc.identifier.eissn
1869-1900  
dc.journal.volume
64  
dc.journal.pagination
1863–1871  
dc.journal.pais
China  
dc.description.fil
Fil: Zhang, Jin. Nankai University; China  
dc.description.fil
Fil: Feng, Fan. Nankai University; China  
dc.description.fil
Fil: Han, TianYi. Nankai University; China  
dc.description.fil
Fil: Duan, Feng. Nankai University; China  
dc.description.fil
Fil: Sun, Zhe. Riken. Brain Science Institute; Japón  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Solé Casals, Jordi. Central University of Catalonia; España  
dc.journal.title
Science China Technological Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11431-020-1876-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11431-020-1876-3