Mostrar el registro sencillo del ítem

dc.contributor.author
Bordón, Pablo  
dc.contributor.author
Martinelli, Hilda Patricia  
dc.contributor.author
Zabala Medina, Peter  
dc.contributor.author
Bonomo, Nestor Eduardo  
dc.contributor.author
Ratto, Norma Rosa  
dc.date.available
2021-11-04T15:46:13Z  
dc.date.issued
2020-11  
dc.identifier.citation
Bordón, Pablo; Martinelli, Hilda Patricia; Zabala Medina, Peter; Bonomo, Nestor Eduardo; Ratto, Norma Rosa; Automatic detection of mud-wall signatures in ground-penetrating radar data; John Wiley & Sons Inc; Archaeological Prospection; 28; 1; 11-2020; 89-106  
dc.identifier.issn
1075-2196  
dc.identifier.uri
http://hdl.handle.net/11336/146012  
dc.description.abstract
The ground-penetrating radar (GPR) method with the standard constant-offset reflection mode allows to detect and map different types of archaeological structures, such as walls, foundations, floors and roads. The interpretation of the GPR data usually involves a detailed and time-consuming analysis of large amounts of information, which entails nonnegligible chances of errors, especially under nonideal fieldwork conditions. The application of suitable automatic detection algorithms can be useful to more rapidly and successfully complete the interpretation task. In this work, we explore the use of supervised machine learning methodologies to automatically detect mud-wall signatures in radargrams and to map the structures from these detections. Several algorithms, based on Viola–Jones cascade classifiers and the image feature descriptors Haar, histogram of oriented gradients and local binary patterns, were implemented. These algorithms were applied to datasets previously acquired in pre-Inca and Inca-Hispanic sites located in the Andean NW region of Argentina. The best algorithms provided very good detection rates for well-preserved walls and acceptable rates for deteriorated walls, with a low number of spurious predictions. They also exhibited the ability to detect collapsed walls and fragments detached from them. These are remarkable results because mud walls are usually difficult to be detected by conventional analysis, owing to the complex and variable characteristics of their reflection patterns. The results of the automatic detection techniques were represented in plan views and three-dimensional (3D) views that delineated in detail most of the structures of the sites. These algorithms are very fast, so applying them significantly reduces the interpretation times. In addition, once they have been trained using the patterns of one or several sites, they are directly applicable to other sites with similar characteristics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOMATIC DETECTION  
dc.subject
CASCADE CLASSIFIER  
dc.subject
GPR  
dc.subject
MUD WALL  
dc.subject
VIOLA–JONES  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Arqueología  
dc.subject.classification
Historia y Arqueología  
dc.subject.classification
HUMANIDADES  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic detection of mud-wall signatures in ground-penetrating radar data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:22:18Z  
dc.journal.volume
28  
dc.journal.number
1  
dc.journal.pagination
89-106  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Bordón, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Martinelli, Hilda Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Zabala Medina, Peter. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Bonomo, Nestor Eduardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Ratto, Norma Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto de las Culturas. Universidad de Buenos Aires. Instituto de las Culturas; Argentina  
dc.journal.title
Archaeological Prospection  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/arp.1799  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/arp.1799