Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A multimodal emotion recognition method based on facial expressions and electroencephalography

Tan, Ying; Sun, Zhe; Duan, Feng; Solé Casals, Jordi; Caiafa, César FedericoIcon
Fecha de publicación: 09/2021
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Human-robot interaction (HRI) systems play a critical role in society. However, most HRI systems nowadays still face the challenge of disharmony, resulting in an inefficient communication between the human and the robot. In this paper, a multimodal emotion recognition method is proposed to establish an HRI system with a low sense of disharmony. This method is based on facial expressions and electroencephalography (EEG). The image classification method of facial expressions and the suitable feature extraction method of EEG were investigated based on the public datasets. And then these methods were applied to both images and EEG data acquired by ourselves. In addition, the Monte Carlo method was used to merge the results and solve the problem of having a small dataset. The multimodal emotion recognition method was combined with the HRI system, where it achieved a recognition rate of 83.33%. Furthermore, in order to evaluate the HRI system from the user´s point of view, a perceptual assessment method was proposed to evaluate our system, in which the system was scored by the participants based on their experience, achieving an average score of 7 (the scores were ranged from 0 to 10). Experimental results demonstrate the effectiveness and feasibility of the multimodal emotion recognition method, which can be useful to reduce the sense of disharmony of HRI systems.
Palabras clave: Human-robot-interaction , EEG , facial expression
Ver el registro completo
 
Archivos asociados
Tamaño: 4.053Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/146001
URL: https://linkinghub.elsevier.com/retrieve/pii/S1746809421006261
DOI: http://dx.doi.org/10.1016/j.bspc.2021.103029
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Tan, Ying; Sun, Zhe; Duan, Feng; Solé Casals, Jordi; Caiafa, César Federico; A multimodal emotion recognition method based on facial expressions and electroencephalography; Elsevier; Biomedical Signal Processing and Control; 70; 9-2021; 103029, 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES