Mostrar el registro sencillo del ítem

dc.contributor.author
Zhang, Jin  
dc.contributor.author
Feng, Fan  
dc.contributor.author
Marti Puig, Pere  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Duan, Feng  
dc.contributor.author
Sole Casals, Jordi  
dc.date.available
2021-11-04T14:41:17Z  
dc.date.issued
2021-09  
dc.identifier.citation
Zhang, Jin; Feng, Fan; Marti Puig, Pere; Caiafa, César Federico; Sun, Zhe; et al.; Serial-EMD: Fast Empirical Mode Decomposition Method for Multi-dimensional Signals Based on Serialization; Elsevier Science Inc.; Information Sciences; 581; 9-2021; 215-232  
dc.identifier.issn
0020-0255  
dc.identifier.uri
http://hdl.handle.net/11336/145987  
dc.description.abstract
Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in amount of data puts forward higher requirements for the capability of real-time signal analysis, it is difficult for existing EMD and its variants to trade off the growth of data dimension and the speed of signal analysis. In order to decompose multi-dimensional signals at a faster speed, we present a novel signal-serialization method (serial-EMD), which concatenates multi-variate or multi-dimensional signals into a one-dimensional signal and uses various one-dimensional EMD algorithms to decompose it. To verify the effects of the proposed method, synthetic multi-variate time series, artificial 2D images with various textures and real-world facial images are tested. Compared with existing multi-EMD algorithms, the decomposition time becomes significantly reduced. In addition, the results of facial recognition with Intrinsic Mode Functions (IMFs) extracted using our method can achieve a higher accuracy than those obtained by existing multi-EMD algorithms, which demonstrates the superior performance of our method in terms of the quality of IMFs. Furthermore, this method can provide a new perspective to optimize the existing EMD algorithms, that is, transforming the structure of the input signal rather than being constrained by developing envelope computation techniques or signal decomposition methods. In summary, the study suggests that the serial-EMD technique is a highly competitive and fast alternative for multi-dimensional signal analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Empirical Mode Decomposition  
dc.subject
Signal Serialization  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Serial-EMD: Fast Empirical Mode Decomposition Method for Multi-dimensional Signals Based on Serialization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-11-04T13:17:44Z  
dc.journal.number
581  
dc.journal.pagination
215-232  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Zhang, Jin. Nankai University; China  
dc.description.fil
Fil: Feng, Fan. Nankai University; China  
dc.description.fil
Fil: Marti Puig, Pere. Central University of Catalonia; España  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Sun, Zhe. RIKEN; Japón  
dc.description.fil
Fil: Duan, Feng. Nankai University; China  
dc.description.fil
Fil: Sole Casals, Jordi. Central University of Catalonia; España  
dc.journal.title
Information Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0020025521009646  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ins.2021.09.033