Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A graph theory approach to analyze birth defect associations

Elias, Dario Ezequiel; Campaña, Hebe; Poletta, Fernando AdriánIcon ; Heisecke Peralta, Silvina LidiaIcon ; Gili, Juan AntonioIcon ; Ratowiecki, JuliaIcon ; Gimenez, Lucas GabrielIcon ; Pawluk, Mariela SoledadIcon ; Santos, María RitaIcon ; Cosentino, Viviana Raquel; Uranga, Rocio; Rittler, Monica; López Camelo, Jorge SantiagoIcon
Fecha de publicación: 05/2020
Editorial: Public Library of Science
Revista: Plos One
ISSN: 1932-6203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Birth defects are prenatal morphological or functional anomalies. Associations among them are studied to identify their etiopathogenesis. The graph theory methods allow analyzing relationships among a complete set of anomalies. A graph consists of nodes which represent the entities (birth defects in the present work), and edges that join nodes indicating the relationships among them. The aim of the present study was to validate the graph theory methods to study birth defect associations. All birth defects monitoring records from the Estudio Colaborativo Latino Americano de Malformaciones Congénitas gathered between 1967 and 2017 were used. From around 5 million live and stillborn infants, 170,430 had one or more birth defects. Volume-adjusted Chi-Square was used to determine the association strength between two birth defects and to weight the graph edges. The complete birth defect graph showed a Log-Normal degree distribution and its characteristics differed from random, scale-free and small-world graphs. The graph comprised 118 nodes and 550 edges. Birth defects with the highest centrality values were nonspecific codes such as Other upper limb anomalies. After partition, the graph yielded 12 groups; most of them were recognizable and included conditions such as VATER and OEIS associations, and Patau syndrome. Our findings validate the graph theory methods to study birth defect associations. This method may contribute to identify underlying etiopathogeneses as well as to improve coding systems.
Palabras clave: BIRTH DEFECTS ASSOCIATIONS , GRAPH THEORY , ECLAMC
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.568Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/145848
URL: https://dx.plos.org/10.1371/journal.pone.0233529
DOI: http://dx.doi.org/10.1371/journal.pone.0233529
Colecciones
Articulos(CEMIC-CONICET)
Articulos de CENTRO DE EDUCACION MEDICA E INVESTIGACIONES CLINICAS "NORBERTO QUIRNO"
Articulos(IMBICE)
Articulos de INST.MULTIDISCIPL.DE BIOLOGIA CELULAR (I)
Citación
Elias, Dario Ezequiel; Campaña, Hebe; Poletta, Fernando Adrián; Heisecke Peralta, Silvina Lidia; Gili, Juan Antonio; et al.; A graph theory approach to analyze birth defect associations; Public Library of Science; Plos One; 15; 5; 5-2020; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES