Mostrar el registro sencillo del ítem

dc.contributor.author
Gerard, Matias Fernando  
dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Milone, Diego Humberto  
dc.date.available
2017-03-31T14:05:08Z  
dc.date.issued
2013-11  
dc.identifier.citation
Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; An evolutionary approach for searching metabolic pathways; Elsevier; Computers In Biology And Medicine; 43; 11; 11-2013; 1704-1712  
dc.identifier.issn
0010-4825  
dc.identifier.uri
http://hdl.handle.net/11336/14570  
dc.description.abstract
Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is of particular interest when trying, for example, to discover metabolic relations among compounds clustered with a data mining technique. Search strategies find sequences to relate two or more states (compounds) using an appropriate set of transitions (reactions). Evolutionary algorithms carry out the search guided by a fitness function and explore multiple candidate solutions using stochastic operators. In this work we propose an evolutionary algorithm for searching metabolic pathways between two compounds. The operators and fitness function employed are described and the effect of mutation rate is studied. Performance of this algorithm is compared with two classical search strategies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Search Strategies  
dc.subject
Evolutionary Algorithms  
dc.subject
Metabolic Pathways  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An evolutionary approach for searching metabolic pathways  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-03-22T15:19:31Z  
dc.journal.volume
43  
dc.journal.number
11  
dc.journal.pagination
1704-1712  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gerard, Matias Fernando. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina  
dc.description.fil
Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina  
dc.journal.title
Computers In Biology And Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compbiomed.2013.08.017  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010482513002321