Artículo
Extremal elements of a sublattice of the majorization lattice and approximate majorization
Fecha de publicación:
04/2020
Editorial:
IOP Publishing
Revista:
Journal of Physics A: Mathematical and Theoretical
ISSN:
1751-8113
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a probability vector x with its components sorted in non-increasing order, we consider the closed ball B p ǫ (x) with p > 1 formed by the probability vectors whose ℓ p -norm distance to the center x is less than or equal to a radius ǫ. Here, we provide an order-theoretic characterization of these balls by using the majorization partial order. Unlike the case p = 1 previously discussed in the literature, we nd that the extremal probability vectors, in general, do not exist for the closed balls B p ǫ (x) with 1 < p < ∞. On the other hand, we show that B ∞ ǫ (x) is a complete sublattice of the majorization lattice. As a consequence, this ball also has extremal elements. In addition, we give an explicit characterization of those extremal elements in terms of the radius and the center of the ball. This allows us to introduce some notions of approximate majorization and discuss its relation with previous results of approximate majorization given in terms of the ℓ 1 -norm. Finally, we apply our results to the problem of approximate conversion of resources within the framework of quantum resource theory of nonuniformity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Massri, Cesar Dario; Bellomo, Guido; Holik, Federico Hernán; Bosyk, Gustavo Martin; Extremal elements of a sublattice of the majorization lattice and approximate majorization; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 53; 21; 4-2020; 1-24
Compartir
Altmétricas