Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model

Wald, Sascha; Arias, Raúl EduardoIcon ; Alba, Vincenzo
Fecha de publicación: 12/2020
Editorial: American Physical Society
Revista: Physical Review Research
ISSN: 2643-1564
e-ISSN: 2643-1564
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

The study of entanglement spectra is a powerful tool to detect or elucidate universal behavior in quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ , i.e., the lowest-laying gap of the entanglement spectrum, at a two-dimensional quantum critical point. We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition and is mappable to free bosons with an additional external constraint. We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a torus and the half-system bipartition, the entanglement gap vanishes as π2/ ln(L), with L the linear system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the transition, although logarithmic corrections prevent a precise verification of the finite-size scaling. Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to a nontrivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively captured by neglecting the structure of the zero-mode eigenvector.
Palabras clave: ENTANGLEMENT SPECTRUM , QUANTUM ENTANGLEMENT , QUANTUM PHASE TRANSITIONS , QUANTUM STATISTICAL MECHANICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.290Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/145397
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.043404
DOI: http://dx.doi.org/10.1103/PhysRevResearch.2.043404
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model; American Physical Society; Physical Review Research; 2; 043404; 12-2020; 1-19
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Thermal baths as quantum resources: More friends than foes?
    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analía Elizabeth (IOP Publishing, 2015-11-06)
  • Artículo Thermodynamics and Steady State of Quantum Motors and Pumps Far from Equilibrium
    Bustos Marun, Raul Alberto ; Calvo, Hernan Laureano (MDPI, 2019-08-23)
  • Artículo From quantum correlations in dissipative quantum walk to two-qubit systems
    Nizama Mendoza, Marco Alfredo ; Caceres Garcia Faure, Manuel Osvaldo (Elsevier Science, 2014-04)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES