Artículo
Statistical Mechanics of planar stellar systems: Solving divergences in self-gravitational systems
Fecha de publicación:
12/2020
Editorial:
Elsevier Science
Revista:
Physica A: Statistical Mechanics and its Applications
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is believed that the canonical gravitational partition function associated with the twobody interacting Newton’s gravitation cannot be constructed because the concomitant integral is exponentially divergent. We showed previously that one can indeed obtain finite gravitational results employing both the Gibbs–Boltzmann distribution and Tsallis’ one, by recourse to the analytical extension treatment and the generalization of Bollini and Giambiagi’s dimensional regularization. We deal here with a model of disc galaxy with a supermassive black hole at its center. Some interesting and coherent results emerge: i—an upper bound in the temperature, ii—the specific heat is negative, iii—the limit of the specific heat when the mass of the black-hole tends to zero is −kB, iv—the third law of thermodynamics is violated, and v—the gravothermal catastrophe is avoided if the number of constituents of a surrounding halo is equal or less than the number of stars in the galaxy.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Zamora, Darío Javier; Rocca, Mario Carlos; Plastino, Ángel Luis; Statistical Mechanics of planar stellar systems: Solving divergences in self-gravitational systems; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 559; 12-2020; 125088-125095
Compartir
Altmétricas