Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Effects of prolonged elevated temperature on leaf gas exchange and other leaf traits in young olive trees

Miserere, AndreaIcon ; Rousseaux, Maria CeciliaIcon ; Ploschuk, Edmundo Leonardo; Brizuela, Maria MagdalenaIcon ; Curcio, Matías Hernán; Zabaleta Nievas, Romina BelénIcon ; Searles, Peter StoughtonIcon
Fecha de publicación: 09/2020
Editorial: Oxford University Press
Revista: Tree Physiology
ISSN: 0829-318X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Horticultura, Viticultura

Resumen

Despite the economic importance of long-lived crop species in the Mediterranean Basin and their expansion to new warmer regions, their potential responses to prolonged temperature increases have not been adequately addressed. The objectives of this study were to: (i) assess leaf gas exchange responses to prolonged elevated temperature in young olive trees; (ii) evaluate some additional leaf traits such as stomatal density and size under these same conditions; and (iii) determine whether photosynthetic acclimation to temperature was apparent. A field experiment with two temperature levels was conducted using well-irrigated, potted olive trees (cvs. Arbequina, Coratina) grown in open-top chambers during the summer and early fall in two growing seasons. The temperature levels were a near-ambient control (T0) and a heated (T+) treatment (+4 °C). Maximum photosynthetic rate (Amax), stomatal conductance (gs), transpiration (E) and chlorophyll fluorescence were measured. Stomatal size and density and trichome density were also determined. The Amax, gs and chlorophyll fluorescence were little affected by heating. However, leaf E was higher at T+ than T0 in the summer in both seasons due in large part to the moderate increase in vapor pressure deficit that accompanied heating, and consequently water-use efficiency was reduced in heated leaves. When reciprocal temperature measurements were conducted in mid-summer of the second season, Amax values of T0 and T+ leaves were higher under the temperature level at which they grew than when measured at the other temperature level, which suggests some thermal acclimation. Stomatal size and density were greater in T+ than in T0 grown leaves in some cases, which was consistent with a greater E in T+ leaves when measured at both temperature levels. These results suggest that acclimation to long-term changes in temperature must be carefully considered to help determine how olive trees will be influenced by global warming.
Palabras clave: OLEA EUROPAEA , OPEN-TOP CHAMBER , PHOTOSYNTHESIS , STOMATAL CONDUCTANCE , THERMAL ACCLIMATION , WATER-USE EFFICIENCY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.028Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/145329
URL: https://academic.oup.com/treephys/advance-article/doi/10.1093/treephys/tpaa118/5
DOI: https://doi.org/10.1093/treephys/tpaa118
Colecciones
Articulos(CRILAR)
Articulos de CENTRO REGIONAL DE INV. CIENTIFICAS Y TRANSFERENCIA TECNOLOGICA DE ANILLACO
Citación
Miserere, Andrea; Rousseaux, Maria Cecilia; Ploschuk, Edmundo Leonardo; Brizuela, Maria Magdalena; Curcio, Matías Hernán; et al.; Effects of prolonged elevated temperature on leaf gas exchange and other leaf traits in young olive trees; Oxford University Press; Tree Physiology; 41; 2; 9-2020; 254-268
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES