Artículo
The complexity of definability by open first-order formulas
Areces, Carlos Eduardo
; Campercholi, Miguel Alejandro Carlos
; Penazzi, Daniel Eduardo; Ventura, Pablo Gabriel
Fecha de publicación:
12/2020
Editorial:
Oxford University Press
Revista:
Logic Journal of the IGPL (print)
ISSN:
1367-0751
e-ISSN:
1368-9894
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, we formally define and investigate the computational complexity of the definability problem for open first-order formulas (i.e. quantifier free first-order formulas) with equality. Given a logic L, the L-definability problem for finite structures takes as an input a finite structure A and a target relation T over the domain of A and determines whether there is a formula of L whose interpretation in A coincides with T. We show that the complexity of this problem for open first-order formulas (open definability, for short) is coNP-complete. We also investigate the parametric complexity of the problem and prove that if the size and the arity of the target relation T are taken as parameters, then open definability is coW[1]-complete for every vocabulary τ with at least one, at least binary, relation.
Palabras clave:
Definability
,
Open formulas
,
First order logic
,
Complexity
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Areces, Carlos Eduardo; Campercholi, Miguel Alejandro Carlos; Penazzi, Daniel Eduardo; Ventura, Pablo Gabriel; The complexity of definability by open first-order formulas; Oxford University Press; Logic Journal of the IGPL (print); 28; 6; 12-2020; 1093-1105
Compartir
Altmétricas