Mostrar el registro sencillo del ítem
dc.contributor.author
Casper, W. Riley
dc.contributor.author
Grünbaum, Francisco Alberto
dc.contributor.author
Yakimov, Milen
dc.contributor.author
Zurrián, Ignacio Nahuel
dc.date.available
2021-10-26T13:14:12Z
dc.date.issued
2020-03-27
dc.identifier.citation
Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Reflective prolate-spheroidal operators and the adelic grassmannian; Cornell University; arXiv; 27-3-2020; 1-33
dc.identifier.issn
2331-8422
dc.identifier.uri
http://hdl.handle.net/11336/145050
dc.description.abstract
Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory and integrable systems. Previously, such pairs were constructed by ad hoc methods, which worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Grad gives rise to an integral operator TW, acting on L2(Γ) for a contour Γ⊂C, which reflects a differential operator R(z,∂z) in the sense that R(−z,−∂z)∘TW=TW∘R(w,∂w) on a dense subset of L2(Γ). By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψW(x,z). The size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by all rank one bispectral functions ψW(x,−z) reflect a differential operator. A 90∘ rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψW(x,iz) admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cornell University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Mathematical physics
dc.subject
Algebraic geometry
dc.subject
Spectral theory
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Reflective prolate-spheroidal operators and the adelic grassmannian
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-04-23T16:41:52Z
dc.identifier.eissn
2331-8422
dc.journal.pagination
1-33
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Ithaca
dc.description.fil
Fil: Casper, W. Riley. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos
dc.description.fil
Fil: Yakimov, Milen. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
arXiv
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/arxiv.org/abs/2003.11616
Archivos asociados