Mostrar el registro sencillo del ítem

dc.contributor.author
Casper, W. Riley  
dc.contributor.author
Grünbaum, Francisco Alberto  
dc.contributor.author
Yakimov, Milen  
dc.contributor.author
Zurrián, Ignacio Nahuel  
dc.date.available
2021-10-26T13:14:12Z  
dc.date.issued
2020-03-27  
dc.identifier.citation
Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Reflective prolate-spheroidal operators and the adelic grassmannian; Cornell University; arXiv; 27-3-2020; 1-33  
dc.identifier.issn
2331-8422  
dc.identifier.uri
http://hdl.handle.net/11336/145050  
dc.description.abstract
Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory and integrable systems. Previously, such pairs were constructed by ad hoc methods, which worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Grad gives rise to an integral operator TW, acting on L2(Γ) for a contour Γ⊂C, which reflects a differential operator R(z,∂z) in the sense that R(−z,−∂z)∘TW=TW∘R(w,∂w) on a dense subset of L2(Γ). By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψW(x,z). The size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by all rank one bispectral functions ψW(x,−z) reflect a differential operator. A 90∘ rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψW(x,iz) admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cornell University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Mathematical physics  
dc.subject
Algebraic geometry  
dc.subject
Spectral theory  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reflective prolate-spheroidal operators and the adelic grassmannian  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-04-23T16:41:52Z  
dc.identifier.eissn
2331-8422  
dc.journal.pagination
1-33  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Ithaca  
dc.description.fil
Fil: Casper, W. Riley. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos  
dc.description.fil
Fil: Yakimov, Milen. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
arXiv  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/arxiv.org/abs/2003.11616