Mostrar el registro sencillo del ítem

dc.contributor.author
Di Scala, Karina Cecilia  
dc.contributor.author
Meschino, Gustavo  
dc.contributor.author
Vega Gálvez, Antonio  
dc.contributor.author
Lemus Mondaca, Roberto  
dc.contributor.author
Roura, Sara Ines  
dc.contributor.author
Mascheroni, Rodolfo Horacio  
dc.date.available
2017-03-29T21:36:49Z  
dc.date.issued
2013-08  
dc.identifier.citation
Di Scala, Karina Cecilia; Meschino, Gustavo; Vega Gálvez, Antonio; Lemus Mondaca, Roberto; Roura, Sara Ines; et al.; An artificial neural network model for prediction of quality characteristics of apples during convective dehydration; Soc Brasileira Ciencia Tecnologia Alimentos; Ciencia e Tecnologia de Alimentos; 33; 3; 8-2013; 411-416  
dc.identifier.issn
0101-2061  
dc.identifier.uri
http://hdl.handle.net/11336/14481  
dc.description.abstract
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Soc Brasileira Ciencia Tecnologia Alimentos  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Artificial Neural Networks  
dc.subject
Quality Attributes  
dc.subject
Genetic Algorithm  
dc.subject
Process Optimization  
dc.subject.classification
Alimentos y Bebidas  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An artificial neural network model for prediction of quality characteristics of apples during convective dehydration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2015-06-16T22:14:45Z  
dc.identifier.eissn
1678-457X  
dc.journal.volume
33  
dc.journal.number
3  
dc.journal.pagination
411-416  
dc.journal.pais
Brasil  
dc.journal.ciudad
Campinas  
dc.description.fil
Fil: Di Scala, Karina Cecilia. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Meschino, Gustavo. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Electronica. Laboratorio de Bioingenieria; Argentina  
dc.description.fil
Fil: Vega Gálvez, Antonio. Universidad de la Serena; Chile  
dc.description.fil
Fil: Lemus Mondaca, Roberto. Universidad de la Serena; Chile  
dc.description.fil
Fil: Roura, Sara Ines. Universidad Nacional de Mar del Plata. Facultad de Ingenieria. Departamento de Ingenieria Quimica. Grupo de Inv En Ingenieria En Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mascheroni, Rodolfo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones en Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina  
dc.journal.title
Ciencia e Tecnologia de Alimentos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1590/S0101-20612013005000064  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/8v6jfr  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=395940117004