Mostrar el registro sencillo del ítem

dc.contributor.author
Videla, Santiago  
dc.contributor.author
Konokotina, Irina  
dc.contributor.author
Alexopoulos, Leonidas G.  
dc.contributor.author
Saez Rodriguez, Julio  
dc.contributor.author
Schaub, Torsten  
dc.contributor.author
Siegel, Anne  
dc.contributor.author
Guziolowski, Carito  
dc.date.available
2017-03-29T19:06:45Z  
dc.date.issued
2015-09-04  
dc.identifier.citation
Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G.; Saez Rodriguez, Julio; Schaub, Torsten; et al.; Designing Experiments to Discriminate Families of Logic Models; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 3; 04-9-2015; 131  
dc.identifier.uri
http://hdl.handle.net/11336/14465  
dc.description.abstract
Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Experimental Design  
dc.subject
Boolean Logic Models  
dc.subject
Answer Set Programming  
dc.subject
Signaling Networks  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Designing Experiments to Discriminate Families of Logic Models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-12-16T17:27:02Z  
dc.identifier.eissn
2296-4185  
dc.journal.volume
3  
dc.journal.pagination
131  
dc.journal.pais
Suiza  
dc.journal.ciudad
Lausanne  
dc.description.fil
Fil: Videla, Santiago. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Bioquimicas de Buenos Airesfundacion Instituto Leloir. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia. Universität Potsdam. Institut für Informatik; Alemania  
dc.description.fil
Fil: Konokotina, Irina. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Alexopoulos, Leonidas G.. Universidad Nacional y Kapodistriaca de Atenas; Grecia  
dc.description.fil
Fil: Saez Rodriguez, Julio. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido  
dc.description.fil
Fil: Schaub, Torsten. Universität Potsdam. Institut für Informatik; Alemania  
dc.description.fil
Fil: Siegel, Anne. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia  
dc.description.fil
Fil: Guziolowski, Carito. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Frontiers in Bioengineering and Biotechnology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fbioe.2015.00131/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3389/fbioe.2015.00131