Artículo
Lipschitz continuity of minimizers in a problem with nonstandard growth
Fecha de publicación:
10/2020
Editorial:
American Institute of Mathematical Sciences
Revista:
Mathematics In Engineering
ISSN:
2640-3501
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we obtain the Lipschitz continuity of nonnegative local minimizers of the functional J(v) = ∫ Ω - F(x; v; ∇v) + (x)νfv>0) dx, under nonstandard growth conditions of the energy function F(x; s; η) and 0 < λmin ≤ λ (x) ≤ λmax < 1. This is the optimal regularity for the problem. Our results generalize the ones we obtained in the case of the inhomogeneous p(x)-Laplacian in our previous work. Nonnegative local minimizers u satisfy in their positivity set a general nonlinear degenerate/singular equation divA(x; u; ∇u) = B(x; u; ru) of nonstandard growth type. As a by-product of our study, we obtain several results for this equation that are of independent interest.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; Lipschitz continuity of minimizers in a problem with nonstandard growth; American Institute of Mathematical Sciences; Mathematics In Engineering; 3; 1; 10-2020; 1-39
Compartir
Altmétricas