Artículo
Stability of the Stokes projection on weighted spaces and applications
Fecha de publicación:
01/2020
Editorial:
American Mathematical Society
Revista:
Mathematics of Computation
ISSN:
0025-5718
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that, on convex polytopes and two or three dimensions, the finite element Stokes projection is stable on weighted spaces $\bW^{1,p}_0(\omega,\Omega) \times L^p(\omega,\Omega)$, where the weight belongs to a certain Muckenhoupt class and the integrability index can be different from two. We show how this estimate can be applied to obtain error estimates for approximations of the solution to the Stokes problem with singular sources.
Palabras clave:
STOKES EQUATIONS
,
WEIGHTED SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Duran, Ricardo Guillermo; Otárola, Enrique; Salgado, Abner J.; Stability of the Stokes projection on weighted spaces and applications; American Mathematical Society; Mathematics of Computation; 89; 324; 1-2020; 1581-1603
Compartir