Artículo
Homotopy classification of Leavitt path algebras
Fecha de publicación:
03/2020
Editorial:
Academic Press Inc Elsevier Science
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we address the classification problem for purely infinite simple Leavitt path algebras of finite graphs over a field ℓ. Each graph E has associated a Leavitt path ℓ-algebra L(E). There is an open question which asks whether the pair (K0(L(E)),[1L(E)]), consisting of the Grothendieck group together with the class [1L(E)] of the identity, is a complete invariant for the classification, up to algebra isomorphism, of those Leavitt path algebras of finite graphs which are purely infinite simple. We show that (K0(L(E)),[1L(E)]) is a complete invariant for the classification of such algebras up to polynomial homotopy equivalence. To prove this we further develop the study of bivariant algebraic K-theory of Leavitt path algebras started in a previous paper and obtain several other results of independent interest.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Montero, Diego; Homotopy classification of Leavitt path algebras; Academic Press Inc Elsevier Science; Advances in Mathematics; 362; 3-2020; 1-26
Compartir
Altmétricas