Artículo
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
Fecha de publicación:
10/2020
Editorial:
Element
Revista:
Mathematical Inequalities & Applications
ISSN:
1331-4343
e-ISSN:
1848-9966
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.
Palabras clave:
BMO
,
FRACTIONAL INTEGRAL
,
LIPSCHITZ
,
SCHRÖDINGER
,
WEIGHTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-1259
Compartir
Altmétricas