Artículo
On the Lie algebra structure of the first Hochschild cohomology of gentle algebras and Brauer graph algebras
Fecha de publicación:
09/2020
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we determine the first Hochschild homology and cohomology with different coefficients for gentle algebras and we give a geometrical interpretation of these (co)homologies using the ribbon graph of a gentle algebra as defined in [32]. We give an explicit description of the Lie algebra structure of the first Hochschild cohomology of gentle and Brauer graph algebras (with multiplicity one) based on trivial extensions of gentle algebras and we show how the Hochschild cohomology is encoded in the Brauer graph. In particular, we show that except in one low-dimensional case, the resulting Lie algebras are all solvable.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Chaparro Acosta, Cristian Arturo; Schroll, Sibylle; Solotar, Andrea Leonor; On the Lie algebra structure of the first Hochschild cohomology of gentle algebras and Brauer graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 558; 9-2020; 293-326
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Pelaitay, Gustavo Andrés ; Zuluaga Botero, William Javier (Springer, 2023-08)
-
Herscovich Ramoneda, Estanislao Benito (Univ Bielefeld, 2013-12)
-
Artículo Semi-Nelson AlgebrasCornejo, Juan Manuel ; Viglizzo, Ignacio Dario (Springer, 2016-11)