Artículo
Emergence of power law distributions for odd and even lifetimes
Fecha de publicación:
24/12/2020
Editorial:
American Physical Society
Revista:
Physical Review E
ISSN:
1063-651X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Avalanche lifetime distributions have been related to first-return random walk processes. In this sense, the theory for random walks can be employed to understand, for instance, the origin of power law distributions in self-organized criticality. In this work, we study first-return probability distributions, f(n), for discrete random walks with constant one-step transition probabilities. Explicit expressions are given in terms of 2F1 hypergeometric functions, allowing us to study the different behaviors of f(n) for odd and even values of n. We show that the first-return probabilities have a power law behavior with exponent -3/2 only when the random walk is unbiased. In any other case, it presents an exponential decay.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Menchón, Silvia Adriana; Román, Pablo Manuel; Emergence of power law distributions for odd and even lifetimes; American Physical Society; Physical Review E; 102; 6; 24-12-2020; 1-8
Compartir
Altmétricas