Artículo
Two-dimensional twistor manifolds and Teukolsky operators
Fecha de publicación:
10/2020
Editorial:
Springer
Revista:
Letters In Mathematical Physics
ISSN:
0377-9017
e-ISSN:
1573-0530
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.
Palabras clave:
TWISTOR THEORY
,
GENERAL RELATIVITY
,
PERTURBATIONS
,
TEUKOLSKY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-2638
Compartir
Altmétricas