Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation

Di Persia, Leandro EzequielIcon ; Milone, Diego HumbertoIcon ; Yanagida, Masuzo
Fecha de publicación: 06/2011
Editorial: Springer
Revista: Journal Of Signal Processing Systems For Signal Image And Video Technology
ISSN: 1939-8018
e-ISSN: 1939-8115
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In a recent publication the pseudoanechoic mixing model for closely spaced microphones was proposed and a blind audio sources separation algorithm based on this model was developed. This method uses frequency-domain independent component analysis to identify the mixing parameters. These parameters are used to synthesize the separation matrices, and then a time-frequency Wiener postfilter to improve the separation is applied. In this contribution, key aspects of the separation algorithm are optimized with two novel methods. A deeper analysis of the working principles of the Wiener postfilter is presented, which gives an insight in its reverberation reduction capabilities. Also a variation of this postfilter to improve the performance using the information of previous frames is introduced. The basic method uses a fixed central frequency bin for the estimation of the mixture parameters. In this contribution an automatic selection of the central bin, based in the information of the separability of the sources, is introduced. The improvements obtained through these methods are evaluated in an automatic speech recognition task and with the PESQ objective quality measure. The results show an increased robustness and stability of the proposed method, enhancing the separation quality and improving the speech recognition rate of an automatic speech recognition system.
Palabras clave: Pseudoanechoic Model , Blind Source Separation , Mutual Information , Wiener Postfilter , Automatic Speech Recognition , Wiener Postfilter
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 594.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/14395
URL: https://link.springer.com/article/10.1007/s11265-009-0443-3
DOI: http://dx.doi.org//10.1007/s11265-009-0443-3
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Yanagida, Masuzo ; Correlated Postfiltering and Mutual Information in Pseudoanechoic Model Based Blind Source Separation; Springer; Journal Of Signal Processing Systems For Signal Image And Video Technology; 63; 3; 6-2011; 333-344
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES