Artículo
Quantum toric degeneration of quantum flag and Schubert varieties
Fecha de publicación:
09/2020
Editorial:
Springer
Revista:
Transformation Groups
ISSN:
1083-4362
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that certain homological regularity properties of graded connected algebras, such as being AS-Gorenstein or AS-Cohen–Macaulay, can be tested by passing to associated graded rings. In the spirit of noncommutative algebraic geometry, this can be seen as an analogue of the classical result that, in a flat family of varieties over the affine line, regularity properties of the exceptional fiber extend to all fibers. We then show that quantized coordinate rings of flag varieties and Schubert varieties can be filtered so that the associated graded rings are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative version of the result due to Caldero [C02] stating that flag and Schubert varieties degenerate into toric varieties, and implies that quantized coordinate rings of flag and Schubert varieties are AS-Cohen–Macaulay.
Palabras clave:
NONCOMMUTATIVE GEOMETRY
,
DEFORMATIONS
,
QUANTUM FLAG
,
QUANTUM SCHUBERT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Rigal, L.; Zadunaisky Bustillos, Pablo Mauricio; Quantum toric degeneration of quantum flag and Schubert varieties
; Springer; Transformation Groups; 26; 3; 9-2020; 1113-1143
Compartir
Altmétricas