Artículo
Compactness and dichotomy in nonlocal shape optimization
Fecha de publicación:
11/2020
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions' concentration-compactness principle, we prove that either an optimal shape exists or there exists a minimizing sequence consisting of two “pieces” whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case.
Palabras clave:
FRACTIONAL DIFFERENTIAL EQUATIONS
,
SHAPE OPTIMIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Parini, E.; Salort, Ariel Martin; Compactness and dichotomy in nonlocal shape optimization; Wiley VCH Verlag; Mathematische Nachrichten; 293; 11; 11-2020; 2208-2232
Compartir
Altmétricas