Mostrar el registro sencillo del ítem

dc.contributor.author
Jaramillo, Carlos  
dc.contributor.author
Sepulchre, Pierre  
dc.contributor.author
Cardenas, Damian  
dc.contributor.author
Correa Metrio, Alexander  
dc.contributor.author
Moreno, J. Enrique  
dc.contributor.author
Trejos, Raul  
dc.contributor.author
Vallejos, Diego  
dc.contributor.author
Hoyos, Natalia  
dc.contributor.author
Martínez, Camila  
dc.contributor.author
Carvalho, Daniella  
dc.contributor.author
Escobar, Jaime  
dc.contributor.author
Oboh Ikuenobe, Francisca  
dc.contributor.author
Pramparo, Mercedes Beatriz  
dc.contributor.author
Pinzón Aceros, Diego Alberto  
dc.date.available
2021-10-15T18:18:43Z  
dc.date.issued
2020-10  
dc.identifier.citation
Jaramillo, Carlos; Sepulchre, Pierre; Cardenas, Damian; Correa Metrio, Alexander; Moreno, J. Enrique; et al.; Drastic Vegetation Change in the Guajira Peninsula (Colombia) During the Neogene; American Geophysical Union; Paleoceanography and Paleoclimatology; 35; 11; 10-2020; 1-22  
dc.identifier.issn
2572-4517  
dc.identifier.uri
http://hdl.handle.net/11336/143901  
dc.description.abstract
Dry biomes occupy ~35% of the landscape in the Neotropics, but these are heavily human-disturbed. In spite of their importance, we still do not fully understand their origins and how they are sustained. The Guajira Peninsula in northern Colombia is dominated by dry biomes and has a rich Neogene fossil record. Here, we have analyzed its changes in vegetation and precipitation during the Neogene using a fossil pollen and spore dataset of 20 samples taken from a well and we also dated the stratigraphic sequence using microfossils. In addition, we analyzed the pollen and spore contents of 10 Holocene samples to establish a modern baseline for comparison with the Neogene as well as a study of the modern vegetation to assess both its spatial distribution and anthropic disturbances during the initial stages of European colonization. The section was dated to span from the latest Oligocene to the early Miocene (~24.2 to 17.3 Ma), with the Oligocene/Miocene boundary being in the lower Uitpa Formation. The early Miocene vegetation is dominated by a rainforest biome with a mean annual precipitation of ~2,000 mm/yr, which strongly contrasts with Guajira's modern xerophytic vegetation and a precipitation of ~300 mm/yr. The shift to the dry modern vegetation probably occurred over the past three millions years, but the mechanism that led to this change is still uncertain. Global circulation models that include the vegetation could explain the ancient climate of Guajira, but further work is required to assess the feedbacks of vegetation, precipitation, and CO2.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Geophysical Union  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOME  
dc.subject
DRY FOREST  
dc.subject
MIOCENE  
dc.subject
NEOTROPICS  
dc.subject
PALYNOLOGY  
dc.subject
RAINFOREST  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Drastic Vegetation Change in the Guajira Peninsula (Colombia) During the Neogene  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T19:59:16Z  
dc.identifier.eissn
2572-4525  
dc.journal.volume
35  
dc.journal.number
11  
dc.journal.pagination
1-22  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Jaramillo, Carlos. Smithsonian Tropical Research Institute; Panamá. Université Montpellier II; Francia. Universidad de Salamanca; España  
dc.description.fil
Fil: Sepulchre, Pierre. Université Paris‐Saclay; Francia  
dc.description.fil
Fil: Cardenas, Damian. Smithsonian Tropical Research Institute; Panamá  
dc.description.fil
Fil: Correa Metrio, Alexander. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Moreno, J. Enrique. Smithsonian Tropical Research Institute; Panamá  
dc.description.fil
Fil: Trejos, Raul. Universidad de Caldas; Colombia  
dc.description.fil
Fil: Vallejos, Diego. Universidad de Caldas; Colombia  
dc.description.fil
Fil: Hoyos, Natalia. Universidad del Norte; Colombia  
dc.description.fil
Fil: Martínez, Camila. Smithsonian Tropical Research Institute; Panamá  
dc.description.fil
Fil: Carvalho, Daniella. Smithsonian Tropical Research Institute; Panamá  
dc.description.fil
Fil: Escobar, Jaime. Universidad del Norte; Colombia. Smithsonian Tropical Research Institute; Panamá  
dc.description.fil
Fil: Oboh Ikuenobe, Francisca. Missouri University of Science and Technology,; Estados Unidos  
dc.description.fil
Fil: Pramparo, Mercedes Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Pinzón Aceros, Diego Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.journal.title
Paleoceanography and Paleoclimatology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2020PA003933  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1029/2020PA003933