Mostrar el registro sencillo del ítem
dc.contributor.author
Armentano, Maria Gabriela
dc.contributor.author
Lombardi, Ariel Luis
dc.date.available
2021-10-15T18:13:55Z
dc.date.issued
2020-02
dc.identifier.citation
Armentano, Maria Gabriela; Lombardi, Ariel Luis; The Steklov eigenvalue problem in a cuspidal domain; Springer; Numerische Mathematik; 144; 2; 2-2020; 237-270
dc.identifier.issn
0029-599X
dc.identifier.uri
http://hdl.handle.net/11336/143897
dc.description.abstract
In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis requires a special treatment. Indeed, we develop new trace theorems and we also obtain regularity results for the source counterpart. Moreover, under appropriate assumptions on the meshes, we present interpolation error estimates for functions in fractional Sobolev spaces. These estimates allow us to obtain appropriate convergence results of the source counterpart which, in the context of the theory of compact operator, are a fundamental tool in order to prove the convergence of the eigenpairs. At the end, we prove the convergence of the eigenpairs by using graded meshes and present some numerical tests.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Steklov eigenvalue problem
dc.subject
finite elements
dc.subject
cuspidal domains
dc.subject
graded meshes
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The Steklov eigenvalue problem in a cuspidal domain
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:40:01Z
dc.journal.volume
144
dc.journal.number
2
dc.journal.pagination
237-270
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Numerische Mathematik
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00211-019-01092-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00211-019-01092-0
Archivos asociados