Artículo
Slow-to-Start Traffic Model: Traffic Saturation and Scaling Limits
Fecha de publicación:
09/2020
Editorial:
Springer
Revista:
Journal of Statistical Physics
ISSN:
0022-4715
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a one-dimensional traffic model with a slow-to-start rule. The initial position of the cars in R is a Poisson process of parameter λ. Cars have speed 0 or 1 and travel in the same direction. At time zero the speed of all cars is 0; each car waits a mean-one exponential time to switch speed from 0 to 1 and stops when it collides with a stopped car. When the car is no longer blocked, it waits a new exponential time to assume speed one, and so on. We study the saturated regime λ> 1 and the critical regime λ= 1 , showing that in both regimes all cars collide infinitely often and each car has asymptotic mean velocity 1 / λ. In the saturated regime the moving cars form a point process whose intensity tends to 1. The remaining cars condensate in a set of points whose intensity tends to zero as 1/t. We study the scaling limit of the traffic jam evolution in terms of a collection of coalescing Brownian motions.
Palabras clave:
BROWNIAN WEB
,
CONDENSATION
,
SLOW TO START
,
TRAFFIC MODELS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ferrari, Pablo Augusto; Trivellato Rolla, Leonardo; Slow-to-Start Traffic Model: Traffic Saturation and Scaling Limits; Springer; Journal of Statistical Physics; 180; 1-6; 9-2020; 935-953
Compartir
Altmétricas