Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An activity prediction model for steroidal and triterpenoidal inhibitors of acetylcholinesterase enzyme

Borioni, José LuisIcon ; Cavallaro, ValeriaIcon ; Pierini, Adriana BeatrizIcon ; Murray, Ana PaulaIcon ; Peñeñory, Alicia BeatrizIcon ; Puiatti, MarceloIcon ; García, Manuela EmilaIcon
Fecha de publicación: 07/07/2020
Editorial: Springer
Revista: Journal of Computer-Aided Molecular Design
ISSN: 0920-654X
e-ISSN: 1573-4951
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Orgánica

Resumen

Nowadays, the importance of computational methods in the design of therapeutic agents in a more efficient way is indisputable. Particularly, these methods have been important in the design of novel acetylcholinesterase enzyme inhibitors related to Alzheimer’s disease. In this sense, in this report a computational model of linear prediction of acetylcholinesterase inhibitory activity of steroids and triterpenes is presented. The model is based in a correlation between binding energies obtained from molecular dynamic simulations (after docking studies) and IC50 values of a training set. This set includes a family of natural and semi-synthetic structurally related alkaloids reported in bibliography. These types of compounds, with some structural complexity, could be used as building blocks for the synthesis of many important biologically active compounds Therefore, the present study proposes an alternative based on the use of conventional and easily accessible tools to make progress on the rational design of molecules with biological activity.
Palabras clave: ACETYLCHOLINESTERASE INHIBITORS , BIOLOGICAL ACTIVITY PREDICTION , MOLECULAR DYNAMIC SIMULATIONS , STEROIDAL AND TRITERPENOIDAL COMPOUNDS , STRUCTURE ACTIVITY RELATIONSHIPS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.084Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143590
URL: http://link.springer.com/10.1007/s10822-020-00324-y
DOI: http://dx.doi.org/10.1007/s10822-020-00324-y
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Borioni, José Luis; Cavallaro, Valeria; Pierini, Adriana Beatriz; Murray, Ana Paula; Peñeñory, Alicia Beatriz; et al.; An activity prediction model for steroidal and triterpenoidal inhibitors of acetylcholinesterase enzyme; Springer; Journal of Computer-Aided Molecular Design; 34; 7-7-2020; 1079-1090
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES