Artículo
The classification of ERP G 2-structures on Lie groups
Fecha de publicación:
04/12/2020
Editorial:
Springer Heidelberg
Revista:
Annali Di Matematica Pura Ed Applicata
ISSN:
0373-3114
e-ISSN:
1618-1891
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A complete classification of left-invariant closed G2-structures on Lie groups which are extremally Ricci pinched (i.e., dτ=16|τ|2φ+16∗(τ∧τ)), up to equivalence and scaling, is obtained. There are five of them, they are defined on five different completely solvable Lie groups and the G2-structure is exact in all cases except one, given by the only example in which the Lie group is unimodular.
Palabras clave:
EXTREMALLY RICCI PINCHED
,
G2-STRUCTURES
,
LAPLACIAN SOLITONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Jorge Ruben; Nicolini, Marina; The classification of ERP G 2-structures on Lie groups; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 199; 6; 4-12-2020; 2489-2510
Compartir
Altmétricas