Mostrar el registro sencillo del ítem
dc.contributor.author
Marshall, Michael
dc.contributor.author
Tu, Kevin
dc.contributor.author
Andreo, Verónica Carolina
dc.date.available
2021-10-13T03:03:52Z
dc.date.issued
2020-05
dc.identifier.citation
Marshall, Michael; Tu, Kevin; Andreo, Verónica Carolina; On Parameterizing Soil Evaporation in a Direct Remote Sensing Model of ET: PT-JPL; American Geophysical Union; Water Resources Research; 56; 5; 5-2020; 1-18
dc.identifier.issn
0043-1397
dc.identifier.uri
http://hdl.handle.net/11336/143384
dc.description.abstract
Remote sensing models that measure evapotranspiration directly from the Penman-Monteith or Priestley-Taylor equations typically estimate the soil evaporation component over large areas using coarse spatial resolution relative humidity (RH) from geospatial climate datasets. As a result, the models tend to underperform in dry areas at local scales where moisture status is not well represented by surrounding areas. Earth observation sensors that monitor large-scale global dynamics (e.g., MODIS) afford comparable spatial coverage and temporal frequency, but at a higher spatial resolution than geospatial climate datasets. In this study, we compared soil evaporation parameterized with optical and thermal indices derived from MODIS to RH-based soil evaporation as implemented in the Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) model. We evaluated the parameterizations by subtracting PT-JPL transpiration from observation-based flux tower evapotranspiration in agricultural fields across the contiguous United States. We compared the apparent thermal inertia (ATI) index, land surface water index (LSWI), normalized difference water index (NDWI), and a new index derived from red and shortwave infrared bands (soil moisture divergence index [SMDI]). Relationships were significant at the 95% confidence band. LSWI and SMDI explained 18–33% of variance in 8-day soil evaporation. This led to a 3–11% increase in explained ET variance. LSWI and SMDI tended to perform better at the irrigated sites than RH. LSWI and SMDI led to markedly better performance over other indices at a seasonal time step. L-band microwave backscatter can penetrate clouds and can distinguish soil from canopy moisture content. We are presently fusing red-SWIR-RADAR to improve soil evaporation estimation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Geophysical Union
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
EVAPOTRANSPIRATION
dc.subject
LAND SURFACE TEMPERATURE
dc.subject
LATENT HEAT
dc.subject
MODIS
dc.subject
PRIESTLEY-TAYLOR
dc.subject
SHORTWAVE INFRARED
dc.subject.classification
Ciencias Medioambientales
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On Parameterizing Soil Evaporation in a Direct Remote Sensing Model of ET: PT-JPL
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-29T14:51:28Z
dc.identifier.eissn
1944-7973
dc.journal.volume
56
dc.journal.number
5
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington D. C.
dc.description.fil
Fil: Marshall, Michael. University of Twente. Faculty of Geo‐information Science and Earth Observation. Department of Natural Resources; Países Bajos
dc.description.fil
Fil: Tu, Kevin. Corteva Agriscience; Estados Unidos
dc.description.fil
Fil: Andreo, Verónica Carolina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.journal.title
Water Resources Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019WR026290
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1029/2019WR026290
Archivos asociados