Mostrar el registro sencillo del ítem

dc.contributor.author
Diaz, Nahuel Luciano  
dc.contributor.author
Matera, Juan Mauricio  
dc.contributor.author
Rossignoli, Raúl Dante  
dc.date.available
2021-10-13T01:36:21Z  
dc.date.issued
2019-12-30  
dc.identifier.citation
Diaz, Nahuel Luciano; Matera, Juan Mauricio; Rossignoli, Raúl Dante; History state formalism for scalar particles; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 12; 30-12-2019; 1-12  
dc.identifier.issn
2470-0010  
dc.identifier.uri
http://hdl.handle.net/11336/143365  
dc.description.abstract
We present a covariant quantum formalism for scalar particles based on an enlarged Hilbert space. The particular physical theory can be introduced through a timeless Wheeler DeWitt-like equation, whose projection onto four-dimensional coordinates leads to the Klein-Gordon equation. The standard quantum mechanical product in the enlarged space, which is invariant and positive definite, implies the usual Klein-Gordon product when applied to its eigenstates. Moreover, the standard three-dimensional invariant measure emerges naturally from the flat measure in four dimensions when mass eigenstates are considered, allowing a rigorous identification between definite mass history states and the standard Wigner representation. Connections with the free propagator of scalar field theory and localized states are subsequently derived. The formalism also allows the superposition of different theories and remains valid in the presence of a fixed external field, revealing special orthogonality relations. Other details such as extended identities for the current density, the quantization of parameterized theories and the nonrelativistic limit, with its connection to the Page and Wooters formalism, are discussed. A related consistent second quantization formulation is also introduced.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
KLEINGORDON  
dc.subject
QUANTUMTIME  
dc.subject
LORENTZ  
dc.subject
PARTICLES  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
History state formalism for scalar particles  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-27T18:17:59Z  
dc.identifier.eissn
2470-0029  
dc.journal.volume
100  
dc.journal.number
12  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
NY  
dc.description.fil
Fil: Diaz, Nahuel Luciano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Matera, Juan Mauricio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Rossignoli, Raúl Dante. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina  
dc.journal.title
Physical Review D: Particles, Fields, Gravitation and Cosmology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.125020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevD.100.125020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.04004