Artículo
The Ricci pinching functional on solvmanifolds II
Fecha de publicación:
18/02/2020
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
e-ISSN:
1088-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is natural to ask whether solvsolitons are global maxima for the Riccipinching functional F := scal^2/ |Ric|^2 on the set of all left-invariant metrics on a given solvableLie group S, as it is to ask whether they are the only global maxima. A positive answer toboth questions was given in a recent paper by the same authors when the Lie algebra s ofS is either unimodular or has a codimension-one abelian ideal. In the present paper, weprove that this also holds in the following two cases: 1) s has a nilradical of codimension-one; 2) the nilradical n of s is abelian and the functional F is restricted to the set ofmetrics such that a is orthogonal to n, where s = a + n is the orthogonal decomposition with respectto the solvsoliton.
Palabras clave:
Ricci curvature
,
Lie algebras
,
Pinching conditions
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Jorge Ruben; Will, Cynthia Eugenia; The Ricci pinching functional on solvmanifolds II; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 18-2-2020; 2601-2607
Compartir
Altmétricas