Artículo
Robust smoothed canonical correlation analysis for functional data
Fecha de publicación:
09/2021
Editorial:
Statistica Sinica
Revista:
Statistica Sinica
ISSN:
1017-0405
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper provides robust estimators for the first canonical correlation anddirections of random elements on Hilbert separable spaces by using robust association and scale measures combined with basis expansion and/or penalizations as a regularization tool. Under regularity conditions, the resulting estimators are consistent. The finitesample performance of our proposal is illustrated through a simulation study that showsthat, as expected, the robust method outperforms the existing classical procedure whenthe data are contaminated. A real data example is also presented.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Boente Boente, Graciela Lina; Kudraszow, Nadia Laura; Robust smoothed canonical correlation analysis for functional data; Statistica Sinica; Statistica Sinica; 32; 9-2021; 1-25
Compartir
Altmétricas