Mostrar el registro sencillo del ítem

dc.contributor.author
Peña, Daniel  
dc.contributor.author
Smucler, Ezequiel  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2021-10-08T02:31:29Z  
dc.date.issued
2020-02-23  
dc.identifier.citation
Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Gdpc: An R package for generalized dynamic principal components; Journal Statistical Software; Journal Of Statistical Software; 92; 23-2-2020; 1-23  
dc.identifier.issn
1548-7660  
dc.identifier.uri
http://hdl.handle.net/11336/143223  
dc.description.abstract
Gdpc is an R package for the computation of the generalized dynamic principal components proposed in Peña and Yohai (2016). In this paper, we briefly introduce the problem of dynamical principal components, propose a solution based on a reconstruction criteria and present an automatic procedure to compute the optimal reconstruction. This solution can be applied to the non-stationary case, where the components need not be a linear combination of the observations, as is the case in the proposal of Brillinger (1981). This article discusses some new features that are included in the package and that were not considered in Peña and Yohai (2016). The most important one is an automatic procedure for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy. These tools make it easy to use the proposed procedure in large data sets. The procedure can also be used when the number of series is larger than the number of observations. We describe an iterative algorithm and present an example of the use of the package with real data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Journal Statistical Software  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIMENSIONALITY REDUCTION  
dc.subject
HIGH-DIMENSIONAL TIME SERIES  
dc.subject
R  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Gdpc: An R package for generalized dynamic principal components  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:21:49Z  
dc.journal.volume
92  
dc.journal.pagination
1-23  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Peña, Daniel. Universidad Carlos III; España  
dc.description.fil
Fil: Smucler, Ezequiel. Universidad Torcuato Di Tella. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal Of Statistical Software  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18637/jss.v092.c02  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.jstatsoft.org/article/view/v092c02