Mostrar el registro sencillo del ítem
dc.contributor.author
Peña, Daniel
dc.contributor.author
Smucler, Ezequiel
dc.contributor.author
Yohai, Victor Jaime
dc.date.available
2021-10-08T02:31:29Z
dc.date.issued
2020-02-23
dc.identifier.citation
Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Gdpc: An R package for generalized dynamic principal components; Journal Statistical Software; Journal Of Statistical Software; 92; 23-2-2020; 1-23
dc.identifier.issn
1548-7660
dc.identifier.uri
http://hdl.handle.net/11336/143223
dc.description.abstract
Gdpc is an R package for the computation of the generalized dynamic principal components proposed in Peña and Yohai (2016). In this paper, we briefly introduce the problem of dynamical principal components, propose a solution based on a reconstruction criteria and present an automatic procedure to compute the optimal reconstruction. This solution can be applied to the non-stationary case, where the components need not be a linear combination of the observations, as is the case in the proposal of Brillinger (1981). This article discusses some new features that are included in the package and that were not considered in Peña and Yohai (2016). The most important one is an automatic procedure for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy. These tools make it easy to use the proposed procedure in large data sets. The procedure can also be used when the number of series is larger than the number of observations. We describe an iterative algorithm and present an example of the use of the package with real data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Journal Statistical Software
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIMENSIONALITY REDUCTION
dc.subject
HIGH-DIMENSIONAL TIME SERIES
dc.subject
R
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Gdpc: An R package for generalized dynamic principal components
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:21:49Z
dc.journal.volume
92
dc.journal.pagination
1-23
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Peña, Daniel. Universidad Carlos III; España
dc.description.fil
Fil: Smucler, Ezequiel. Universidad Torcuato Di Tella. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Journal Of Statistical Software
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18637/jss.v092.c02
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.jstatsoft.org/article/view/v092c02
Archivos asociados