Mostrar el registro sencillo del ítem

dc.contributor.author
Chen, Mingchen  
dc.contributor.author
Chen, Xun  
dc.contributor.author
Schafer, Nicholas P.  
dc.contributor.author
Clementi, Cecilia  
dc.contributor.author
Komives, Elizabeth A.  
dc.contributor.author
Ferreiro, Diego  
dc.contributor.author
Wolynes, Peter G.  
dc.date.available
2021-10-08T01:32:55Z  
dc.date.issued
2020-11  
dc.identifier.citation
Chen, Mingchen; Chen, Xun; Schafer, Nicholas P.; Clementi, Cecilia; Komives, Elizabeth A.; et al.; Surveying biomolecular frustration at atomic resolution; Nature; Nature Communications; 11; 5944; 11-2020; 1-9  
dc.identifier.issn
2041-1723  
dc.identifier.uri
http://hdl.handle.net/11336/143211  
dc.description.abstract
To function, biomolecules require sufficient specificity of interaction as well as stability to live in the cell while still being able to move. Thermodynamic stability of only a limited number of specific structures is important so as to prevent promiscuous interactions. The individual interactions in proteins, therefore, have evolved collectively to give funneled minimally frustrated landscapes but some strategic parts of biomolecular sequences located at specific sites in the structure have been selected to be frustrated in order to allow both motion and interaction with partners. We describe a framework efficiently to quantify and localize biomolecular frustration at atomic resolution by examining the statistics of the energy changes that occur when the local environment of a site is changed. The location of patches of highly frustrated interactions correlates with key biological locations needed for physiological function. At atomic resolution, it becomes possible to extend frustration analysis to proteinligand complexes. At this resolution one sees that drug specificity is correlated with there being a minimally frustrated binding pocket leading to a funneled binding landscape. Atomistic frustration analysis provides a route for screening for more specific compounds for drug discovery  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Protein Function  
dc.subject
Local Frustration  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Surveying biomolecular frustration at atomic resolution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:51:01Z  
dc.journal.volume
11  
dc.journal.number
5944  
dc.journal.pagination
1-9  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Chen, Mingchen. Rice University; Estados Unidos  
dc.description.fil
Fil: Chen, Xun. Rice University; Estados Unidos  
dc.description.fil
Fil: Schafer, Nicholas P.. Rice University; Estados Unidos  
dc.description.fil
Fil: Clementi, Cecilia. Rice University; Estados Unidos  
dc.description.fil
Fil: Komives, Elizabeth A.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Wolynes, Peter G.. Rice University; Estados Unidos  
dc.journal.title
Nature Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19560-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41467-020-19560-9