Mostrar el registro sencillo del ítem
dc.contributor.author
Chen, Mingchen
dc.contributor.author
Chen, Xun
dc.contributor.author
Schafer, Nicholas P.
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Komives, Elizabeth A.
dc.contributor.author
Ferreiro, Diego
dc.contributor.author
Wolynes, Peter G.
dc.date.available
2021-10-08T01:32:55Z
dc.date.issued
2020-11
dc.identifier.citation
Chen, Mingchen; Chen, Xun; Schafer, Nicholas P.; Clementi, Cecilia; Komives, Elizabeth A.; et al.; Surveying biomolecular frustration at atomic resolution; Nature; Nature Communications; 11; 5944; 11-2020; 1-9
dc.identifier.issn
2041-1723
dc.identifier.uri
http://hdl.handle.net/11336/143211
dc.description.abstract
To function, biomolecules require sufficient specificity of interaction as well as stability to live in the cell while still being able to move. Thermodynamic stability of only a limited number of specific structures is important so as to prevent promiscuous interactions. The individual interactions in proteins, therefore, have evolved collectively to give funneled minimally frustrated landscapes but some strategic parts of biomolecular sequences located at specific sites in the structure have been selected to be frustrated in order to allow both motion and interaction with partners. We describe a framework efficiently to quantify and localize biomolecular frustration at atomic resolution by examining the statistics of the energy changes that occur when the local environment of a site is changed. The location of patches of highly frustrated interactions correlates with key biological locations needed for physiological function. At atomic resolution, it becomes possible to extend frustration analysis to proteinligand complexes. At this resolution one sees that drug specificity is correlated with there being a minimally frustrated binding pocket leading to a funneled binding landscape. Atomistic frustration analysis provides a route for screening for more specific compounds for drug discovery
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Protein Function
dc.subject
Local Frustration
dc.subject.classification
Bioquímica y Biología Molecular
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Surveying biomolecular frustration at atomic resolution
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:51:01Z
dc.journal.volume
11
dc.journal.number
5944
dc.journal.pagination
1-9
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Chen, Mingchen. Rice University; Estados Unidos
dc.description.fil
Fil: Chen, Xun. Rice University; Estados Unidos
dc.description.fil
Fil: Schafer, Nicholas P.. Rice University; Estados Unidos
dc.description.fil
Fil: Clementi, Cecilia. Rice University; Estados Unidos
dc.description.fil
Fil: Komives, Elizabeth A.. University of California at San Diego; Estados Unidos
dc.description.fil
Fil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Wolynes, Peter G.. Rice University; Estados Unidos
dc.journal.title
Nature Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19560-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41467-020-19560-9
Archivos asociados