Artículo
Robust doubly protected estimators for quantiles with missing data
Fecha de publicación:
09/2020
Editorial:
Springer
Revista:
Test
ISSN:
1133-0686
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Doubly protected methods are widely used for estimating the population mean of an outcome Y from a sample where the response is missing in some individuals. To compensate for the missing responses, a vector X of covariates is observed at each individual, and the missing mechanism is assumed to be independent of the response, conditioned on X (missing at random). In recent years, many authors have turned from the estimation of the mean to that of the median, and more generally, doubly protected estimators of the quantiles have been proposed. In this work, we present doubly protected estimators for the quantiles in semiparametric models that are also robust, in the sense that they are resistant to the presence of outliers in the sample
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Sued, Raquel Mariela; Valdora, Marina Silvia; Yohai, Victor Jaime; Robust doubly protected estimators for quantiles with missing data; Springer; Test; 29; 3; 9-2020; 819-843
Compartir
Altmétricas