Artículo
The algebra of bounded-type holomorphic functions on the ball
Fecha de publicación:
02/2020
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.
Palabras clave:
HOLOMORPHIC FUNCTIONS
,
RIEMANN DOMAINS
,
SPECTRUM OF ALGEBRAS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-2457
Compartir
Altmétricas