Artículo
Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
Fecha de publicación:
06/2020
Editorial:
Springer Heidelberg
Revista:
Annals of the Institute of Statistical Mathematics
ISSN:
0020-3157
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper develops a robust profile estimation method for the parametric and nonparametric components of a single-index model when the errors have a strongly unimodal density with unknown nuisance parameter. We derive consistency results for the link function estimators as well as consistency and asymptotic distribution results for the single-index parameter estimators. Under a log-Gamma model, the sensitivity to anomalous observations is studied using the empirical influence curve. We also discuss a robust K-fold cross-validation procedure to select the smoothing parameters. A numerical study carried on with errors following a log-Gamma model and for contaminated schemes shows the good robustness properties of the proposed estimators and the advantages of considering a robust approach instead of the classical one. A real data set illustrates the use of our proposal.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Agostinelli, Claudio; Bianco, Ana Maria; Boente Boente, Graciela Lina; Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 72; 3; 6-2020; 855-893
Compartir
Altmétricas