Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Decoding kinetic features of hand motor preparation from single-trial EEG using convolutional neural networks

Gatti, Ramiro HernánIcon ; Atum, Yanina Verónica; Schiaffino, Luciano; Jochumsen, Mads; Biurrun Manresa, José AlbertoIcon
Fecha de publicación: 01/2020
Editorial: Wiley Blackwell Publishing, Inc
Revista: European Journal of Neuroscience
ISSN: 0953-816X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Médica

Resumen

Building accurate movement decoding models from brain signals is crucial for many biomedical applications. Predicting specific movement features, such as speed and force, before movement execution may provide additional useful information at the expense of increasing the complexity of the decoding problem. Recent attempts to predict movement speed and force from the electroencephalogram (EEG) achieved classification accuracies at or slightly above chance levels, highlighting the need for more accurate prediction strategies. Thus, the aims of this study were to accurately predict hand movement speed and force from single-trial EEG signals and to decode neurophysiological information of motor preparation from the prediction strategies. To these ends, a decoding model based on convolutional neural networks (ConvNets) was implemented and compared against other state-of-the-art prediction strategies, such as support vector machines and decision trees. ConvNets outperformed the other prediction strategies, achieving an overall accuracy of 84% in the classification of two different levels of speed and force (four-class classification) from pre-movement single-trial EEG (100 ms and up to 1,600 ms prior to movement execution). Furthermore, an analysis of the ConvNet architectures suggests that the network performs a complex spatiotemporal integration of EEG data to optimize classification accuracy. These results show that movement speed and force can be accurately predicted from single-trial EEG, and that the prediction strategies may provide useful neurophysiological information about motor preparation.
Palabras clave: BRAIN COMPUTER INTERFACE , DEEP LEARNING , MOVEMENT PREDICTION , MULTI-CLASS CLASSIFICATION , NEURAL ENGINEERING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.534Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143154
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14936
DOI: https://doi.org/10.1111/ejn.14936
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Gatti, Ramiro Hernán; Atum, Yanina Verónica; Schiaffino, Luciano; Jochumsen, Mads; Biurrun Manresa, José Alberto; Decoding kinetic features of hand motor preparation from single-trial EEG using convolutional neural networks; Wiley Blackwell Publishing, Inc; European Journal of Neuroscience; 53; 2; 1-2020; 556-570
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES