Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multistate voter model with imperfect copying

Vazquez, FedericoIcon ; Loscar, Ernesto SelimIcon ; Baglietto, GabrielIcon
Fecha de publicación: 10/2019
Editorial: American Physical Society
Revista: Physical Review E
ISSN: 2470-0053
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The voter model with multiple states has found applications in areas as diverse as population genetics, opinion formation, species competition, and language dynamics, among others. In a single step of the dynamics, an individual chosen at random copies the state of a random neighbor in the population. In this basic formulation, it is assumed that the copying is perfect, and thus an exact copy of an individual is generated at each time step. Here, we introduce and study a variant of the multistate voter model in mean field that incorporates a degree of imperfection or error in the copying process, which leaves the states of the two interacting individuals similar but not exactly equal. This dynamics can also be interpreted as a perfect copying with the addition of noise: a minimalistic model for flocking. We found that the ordering properties of this multistate noisy voter model, measured by a parameter ψ in [0,1], depend on the amplitude η of the copying error or noise and the population size N . In the case of perfect copying η = 0 , the system reaches an absorbing configuration with complete order ( ψ = 1 ) for all values of N . However, for any degree of imperfection η > 0 , we show that the average value of ψ at the stationary state decreases with N as ⟨ ψ ⟩ ≃ 6 / ( π 2 η 2 N ) for η ≪ 1 and η 2 N ≳ 1 , and thus the system becomes totally disordered in the thermodynamic limit N → ∞ . We also show that ⟨ ψ ⟩ ≃ 1 − π 2 6 η 2 N in the vanishing small error limit η → 0 , which implies that complete order is never achieved for η > 0 . These results are supported by Monte Carlo simulations of the model, which allow to study other scenarios as well.
Palabras clave: Complex Systems , Nonequilibrium statistical Mechanics , Active Matter , Social Systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 874.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/143150
URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.042301
DOI: http://dx.doi.org/10.1103/PhysRevE.100.042301
URL: https://arxiv.org/abs/1902.07253v2
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Vazquez, Federico; Loscar, Ernesto Selim; Baglietto, Gabriel; Multistate voter model with imperfect copying; American Physical Society; Physical Review E; 100; 4; 10-2019; 1-46
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES