Mostrar el registro sencillo del ítem
dc.contributor.author
Isralowitz, Joshua
dc.contributor.author
Pott, Sandra
dc.contributor.author
Rivera Ríos, Israel Pablo
dc.date.available
2021-10-07T14:09:24Z
dc.date.issued
2020-03-06
dc.identifier.citation
Isralowitz, Joshua; Pott, Sandra; Rivera Ríos, Israel Pablo; Sharp $$A_{1}$$A1 Weighted Estimates for Vector-Valued Operators; Springer; The Journal Of Geometric Analysis; 31; 6-3-2020; 3085–3116
dc.identifier.issn
1050-6926
dc.identifier.uri
http://hdl.handle.net/11336/143097
dc.description.abstract
Given 1 ≤ q < p < ∞, quantitative weighted L p estimates, in terms of Aq weights, for vector-valued maximal functions, Calderón–Zygmund operators, commutators, and maximal rough singular integrals are obtained. The results for singular operators will rely upon suitable convex body domination results, which in the case of commutators will be provided in this work, obtaining as a byproduct a new proof for the scalar case as well.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MATRIX AP WEIGHTS
dc.subject
VECTOR-VALUED OPERATORS
dc.subject
QUANTITATIVE WEIGHTED ESTIMATES
dc.subject
MAXIMAL FUNCTION
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sharp $$A_{1}$$A1 Weighted Estimates for Vector-Valued Operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-27T15:24:51Z
dc.journal.volume
31
dc.journal.pagination
3085–3116
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Isralowitz, Joshua. University at Albany; Estados Unidos
dc.description.fil
Fil: Pott, Sandra. Lund University; Suecia
dc.description.fil
Fil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
The Journal Of Geometric Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12220-020-00385-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12220-020-00385-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/pdf/1905.13684.pdf
Archivos asociados