Mostrar el registro sencillo del ítem

dc.contributor.author
Isralowitz, Joshua  
dc.contributor.author
Pott, Sandra  
dc.contributor.author
Rivera Ríos, Israel Pablo  
dc.date.available
2021-10-07T14:09:24Z  
dc.date.issued
2020-03-06  
dc.identifier.citation
Isralowitz, Joshua; Pott, Sandra; Rivera Ríos, Israel Pablo; Sharp $$A_{1}$$A1 Weighted Estimates for Vector-Valued Operators; Springer; The Journal Of Geometric Analysis; 31; 6-3-2020; 3085–3116  
dc.identifier.issn
1050-6926  
dc.identifier.uri
http://hdl.handle.net/11336/143097  
dc.description.abstract
Given 1 ≤ q < p < ∞, quantitative weighted L p estimates, in terms of Aq weights, for vector-valued maximal functions, Calderón–Zygmund operators, commutators, and maximal rough singular integrals are obtained. The results for singular operators will rely upon suitable convex body domination results, which in the case of commutators will be provided in this work, obtaining as a byproduct a new proof for the scalar case as well.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MATRIX AP WEIGHTS  
dc.subject
VECTOR-VALUED OPERATORS  
dc.subject
QUANTITATIVE WEIGHTED ESTIMATES  
dc.subject
MAXIMAL FUNCTION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sharp $$A_{1}$$A1 Weighted Estimates for Vector-Valued Operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-27T15:24:51Z  
dc.journal.volume
31  
dc.journal.pagination
3085–3116  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Isralowitz, Joshua. University at Albany; Estados Unidos  
dc.description.fil
Fil: Pott, Sandra. Lund University; Suecia  
dc.description.fil
Fil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
The Journal Of Geometric Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12220-020-00385-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12220-020-00385-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/pdf/1905.13684.pdf