Mostrar el registro sencillo del ítem
dc.contributor.author
Ballesteros, Maria Laura
dc.contributor.author
Boyle, Rhianna L.
dc.contributor.author
Kellar, Claudette R.
dc.contributor.author
Miglioranza, Karina Silvia Beatriz
dc.contributor.author
Bistoni, Maria de Los Angeles
dc.contributor.author
Pettigrove, Vincent
dc.contributor.author
Long, Sara M.
dc.date.available
2021-10-06T20:57:18Z
dc.date.issued
2020-11
dc.identifier.citation
Ballesteros, Maria Laura; Boyle, Rhianna L.; Kellar, Claudette R.; Miglioranza, Karina Silvia Beatriz; Bistoni, Maria de Los Angeles; et al.; What types of enzyme activities are useful biomarkers of bifenthrin exposure on Chironomus sp. (Diptera, Chironomidae) larvae under laboratory and field-based microcosm conditions?; Elsevier Science; Aquatic Toxicology; 228; 11-2020; 1-8
dc.identifier.issn
0166-445X
dc.identifier.uri
http://hdl.handle.net/11336/142987
dc.description.abstract
Bifenthrin is a second generation synthetic pyrethroid insecticide that is widely used in Australia and worldwide. It is frequently found in urban freshwater sediments at concentrations likely to impact biota as it is highly toxic to fish and macroinvertebrates, such as chironomids. Our main goal was to evaluate if oxidative stress and hydrolase enzymes are useful biomarkers of effect of synthetic pyrethroids exposure under different scenarios. Chironomus tepperi larvae (5 days old) were exposed to sub-lethal sediment concentrations of bifenthrin for 5 days under controlled laboratory conditions. A field-based microcosm exposure with bifenthrin-spiked sediments (using the same concentrations as the laboratory exposure) was carried out at a clean field site for four weeks to allow for colonization and development of resident chironomid larvae. At the end of both experiments, Chironomus larvae (C. tepperi in the laboratory exposures and C. oppositus in the microcosm exposures) were collected and oxidative stress enzymes (Glutathione-s-Transferase, Glutathione Reductase and Glutathione Peroxidase) and hydrolase enzymes (Acetylcholinesterase and Carboxylesterase) were measured. Only the Glutathione Peroxidase activity was significantly impacted in larvae from the laboratory exposure. On the contrary, significant changes were observed in all the measured enzymes from the field-based microcosm exposure. This is likely because exposure was throughout the whole life cycle, from egg mass to fourth instar, showing a more realistic exposure scenario. Furthermore, this is the first time that changes in oxidative stress and hydrolase enzymes have been shown to occur in Australian non-biting midges exposed under field-based microcosm conditions. Thus, this study demonstrated the usefulness of these enzymes as biomarkers of effect following bifenthrin exposure in microcosms. It also highlights the importance of using a range of different biochemical endpoints to get a more holistic understanding of pesticide effects and the pathways involved.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHIRONOMUS
dc.subject
HYDROLASE ENZYMES
dc.subject
MICROCOSMS
dc.subject
OXIDATIVE STRESS RESPONSES
dc.subject
SYNTHETIC PYRETHROID
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
What types of enzyme activities are useful biomarkers of bifenthrin exposure on Chironomus sp. (Diptera, Chironomidae) larvae under laboratory and field-based microcosm conditions?
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-06T15:44:06Z
dc.journal.volume
228
dc.journal.pagination
1-8
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Ballesteros, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
dc.description.fil
Fil: Boyle, Rhianna L.. University of Melbourne; Australia
dc.description.fil
Fil: Kellar, Claudette R.. Center Of Aquatic Pollution Identification Management; Australia. Royal Melbourne Institute of Technology. School of Science; Australia
dc.description.fil
Fil: Miglioranza, Karina Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
dc.description.fil
Fil: Bistoni, Maria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Div.animal Ii; Argentina
dc.description.fil
Fil: Pettigrove, Vincent. Center for Aquatic Pollution Identification and Management; Australia. University of Melbourne; Australia
dc.description.fil
Fil: Long, Sara M.. Center for Aquatic Pollution Identification and Management; Australia. University of Melbourne; Australia
dc.journal.title
Aquatic Toxicology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0166445X20303684
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aquatox.2020.105618
Archivos asociados