Mostrar el registro sencillo del ítem

dc.contributor.author
Ballesteros, Maria Laura  
dc.contributor.author
Boyle, Rhianna L.  
dc.contributor.author
Kellar, Claudette R.  
dc.contributor.author
Miglioranza, Karina Silvia Beatriz  
dc.contributor.author
Bistoni, Maria de Los Angeles  
dc.contributor.author
Pettigrove, Vincent  
dc.contributor.author
Long, Sara M.  
dc.date.available
2021-10-06T20:57:18Z  
dc.date.issued
2020-11  
dc.identifier.citation
Ballesteros, Maria Laura; Boyle, Rhianna L.; Kellar, Claudette R.; Miglioranza, Karina Silvia Beatriz; Bistoni, Maria de Los Angeles; et al.; What types of enzyme activities are useful biomarkers of bifenthrin exposure on Chironomus sp. (Diptera, Chironomidae) larvae under laboratory and field-based microcosm conditions?; Elsevier Science; Aquatic Toxicology; 228; 11-2020; 1-8  
dc.identifier.issn
0166-445X  
dc.identifier.uri
http://hdl.handle.net/11336/142987  
dc.description.abstract
Bifenthrin is a second generation synthetic pyrethroid insecticide that is widely used in Australia and worldwide. It is frequently found in urban freshwater sediments at concentrations likely to impact biota as it is highly toxic to fish and macroinvertebrates, such as chironomids. Our main goal was to evaluate if oxidative stress and hydrolase enzymes are useful biomarkers of effect of synthetic pyrethroids exposure under different scenarios. Chironomus tepperi larvae (5 days old) were exposed to sub-lethal sediment concentrations of bifenthrin for 5 days under controlled laboratory conditions. A field-based microcosm exposure with bifenthrin-spiked sediments (using the same concentrations as the laboratory exposure) was carried out at a clean field site for four weeks to allow for colonization and development of resident chironomid larvae. At the end of both experiments, Chironomus larvae (C. tepperi in the laboratory exposures and C. oppositus in the microcosm exposures) were collected and oxidative stress enzymes (Glutathione-s-Transferase, Glutathione Reductase and Glutathione Peroxidase) and hydrolase enzymes (Acetylcholinesterase and Carboxylesterase) were measured. Only the Glutathione Peroxidase activity was significantly impacted in larvae from the laboratory exposure. On the contrary, significant changes were observed in all the measured enzymes from the field-based microcosm exposure. This is likely because exposure was throughout the whole life cycle, from egg mass to fourth instar, showing a more realistic exposure scenario. Furthermore, this is the first time that changes in oxidative stress and hydrolase enzymes have been shown to occur in Australian non-biting midges exposed under field-based microcosm conditions. Thus, this study demonstrated the usefulness of these enzymes as biomarkers of effect following bifenthrin exposure in microcosms. It also highlights the importance of using a range of different biochemical endpoints to get a more holistic understanding of pesticide effects and the pathways involved.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHIRONOMUS  
dc.subject
HYDROLASE ENZYMES  
dc.subject
MICROCOSMS  
dc.subject
OXIDATIVE STRESS RESPONSES  
dc.subject
SYNTHETIC PYRETHROID  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
What types of enzyme activities are useful biomarkers of bifenthrin exposure on Chironomus sp. (Diptera, Chironomidae) larvae under laboratory and field-based microcosm conditions?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T15:44:06Z  
dc.journal.volume
228  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ballesteros, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina  
dc.description.fil
Fil: Boyle, Rhianna L.. University of Melbourne; Australia  
dc.description.fil
Fil: Kellar, Claudette R.. Center Of Aquatic Pollution Identification Management; Australia. Royal Melbourne Institute of Technology. School of Science; Australia  
dc.description.fil
Fil: Miglioranza, Karina Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina  
dc.description.fil
Fil: Bistoni, Maria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Div.animal Ii; Argentina  
dc.description.fil
Fil: Pettigrove, Vincent. Center for Aquatic Pollution Identification and Management; Australia. University of Melbourne; Australia  
dc.description.fil
Fil: Long, Sara M.. Center for Aquatic Pollution Identification and Management; Australia. University of Melbourne; Australia  
dc.journal.title
Aquatic Toxicology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0166445X20303684  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aquatox.2020.105618