Artículo
Weighted inequalities of Fefferman-Stein type for Riesz-Schrödinger transforms
Fecha de publicación:
03/2020
Editorial:
Element
Revista:
Mathematical Inequalities & Applications
ISSN:
1331-4343
e-ISSN:
1848-9966
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we are concerned with Fefferman-Stein type inequalities. More precisely, given an operator T and some p, 1 < p < ∞, we look for operators M such that the inequality |+ |T f |pw < C | | f |pM w, holds true for any weight w. Specifically, we are interested in the case of T being any first or second order Riesz transform associated to the Schrödinger operator L = −Δ + V , with V a non-negative function satisfying an appropriate reverse-Hölder condition. For the Riesz-Schrödinger transforms ∇L−1/2 and ∇2 L−1 we make use of a result due to C. Pérez where this problem is solved for classical Calderón-Zygmund operators.
Palabras clave:
SCHRÖDINGER OPERATOR
,
SINGULAR INTEGRAL
,
WEIGHTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bongioanni, Bruno; Harboure, Eleonor Ofelia; Quijano, Pablo; Weighted inequalities of Fefferman-Stein type for Riesz-Schrödinger transforms; Element; Mathematical Inequalities & Applications; 23; 3; 3-2020; 775-803
Compartir
Altmétricas