Mostrar el registro sencillo del ítem
dc.contributor.author
Rodriguez Aguilar, Leandro Pedro Faustino
dc.contributor.author
Tupaz Pantoja, Jhovany Alexander
dc.contributor.author
Sanchez, Mabel Cristina
dc.date.available
2021-10-06T00:18:32Z
dc.date.issued
2021-04
dc.identifier.citation
Rodriguez Aguilar, Leandro Pedro Faustino; Tupaz Pantoja, Jhovany Alexander; Sanchez, Mabel Cristina; Sensor location for nonlinear state estimation; Elsevier; Journal of Process Control; 100; 4-2021; 11-19
dc.identifier.issn
0959-1524
dc.identifier.uri
http://hdl.handle.net/11336/142779
dc.description.abstract
The structure of the sensor network installed in the plant strongly influences the performance of state estimation techniques. One of them, the Unscented Kalman Filter (UKF), provides significant improvement over other filtering methods. It approximates the true mean and covariance of random variables that undergo nonlinear transformations correctly up to the third order with low computational effort. In this work, a Sensor Network Design strategy for monitoring nonlinear dynamic chemical processes using UKF is presented. In contrast to previous works, the tradeoff between cost and estimates precision is addressed in a systematic and efficient way. A novel procedure is proposed to calculate a sensible upper bound for the estimation error. This avoids fixing bounds based on engineer judgment about the new process. Regarding efficiency, the obtained sensor network is generally cheaper and provides a global precision which is between the maximum possible for a given budget and the precision obtained by the sensor network that satisfices the maximum system observability for the same budget. This formulation is important when the budget is limited and it is desired to minimize the cost, without losing the quality of the estimates. The proposed methodology can be easily extended to other nonlinear state estimation techniques. The optimal solution is obtained using a level transversal search algorithm with cutting and stopping criteria. A copolymerization process taken from the literature is used to demonstrate the performance of the proposed instrumentation design technique.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COPOLYMERIZATION PROCESS
dc.subject
NONLINEAR SYSTEMS
dc.subject
SENSOR LOCATION
dc.subject
STATE ESTIMATION
dc.subject
UNSCENTED KALMAN FILTER
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Sensor location for nonlinear state estimation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-01T17:48:43Z
dc.identifier.eissn
1873-2771
dc.journal.volume
100
dc.journal.pagination
11-19
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Rodriguez Aguilar, Leandro Pedro Faustino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.description.fil
Fil: Tupaz Pantoja, Jhovany Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Journal of Process Control
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0959152421000238
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jprocont.2021.02.005
Archivos asociados