Mostrar el registro sencillo del ítem
dc.contributor.author
Schrauf, Matías Florián
dc.contributor.author
Martini, Johannes W.R.
dc.contributor.author
Simianer, Henner
dc.contributor.author
de los Campos, Gustavo
dc.contributor.author
Cantet, Rodolfo Juan Carlos
dc.contributor.author
Freudenthal, Jan
dc.contributor.author
Korte, Arthur
dc.contributor.author
Munilla Leguizamon, Sebastian
dc.date.available
2021-10-05T15:21:51Z
dc.date.issued
2020-09-01
dc.identifier.citation
Schrauf, Matías Florián; Martini, Johannes W.R.; Simianer, Henner; de los Campos, Gustavo; Cantet, Rodolfo Juan Carlos; et al.; Phantom epistasis in genomic selection: on the predictive ability of epistatic models; Genetics Society of America; G3: Genes, Genomes, Genetics; 10; 9; 1-9-2020; 3137-3145
dc.identifier.issn
2160-1836
dc.identifier.uri
http://hdl.handle.net/11336/142691
dc.description.abstract
Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Genetics Society of America
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ADDITIVE EFFECTS
dc.subject
BREEDING
dc.subject
EPISTASIS
dc.subject
GENOMIC
dc.subject
GENOMICS
dc.subject
GENPRED
dc.subject
PREDICTION
dc.subject
RESOURCES
dc.subject
SHARED DATA
dc.subject.classification
Agronomía, reproducción y protección de plantas
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Phantom epistasis in genomic selection: on the predictive ability of epistatic models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-25T19:39:48Z
dc.journal.volume
10
dc.journal.number
9
dc.journal.pagination
3137-3145
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Martini, Johannes W.R.. Centro Internacional de Mejoramiento de Maíz y Trigo; México
dc.description.fil
Fil: Simianer, Henner. Universität Göttingen; Alemania
dc.description.fil
Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina
dc.description.fil
Fil: Freudenthal, Jan. Universität Würzburg; Alemania
dc.description.fil
Fil: Korte, Arthur. Universität Würzburg; Alemania
dc.description.fil
Fil: Munilla Leguizamon, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
G3: Genes, Genomes, Genetics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.g3journal.org/content/10/9/3137
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1534/g3.120.401300
Archivos asociados