Mostrar el registro sencillo del ítem

dc.contributor.author
Gallastegui, Antonela  
dc.contributor.author
Minudri, Daniela  
dc.contributor.author
Casado, Nerea  
dc.contributor.author
Goujon, Nicolas  
dc.contributor.author
Ruipérez, Fernando  
dc.contributor.author
Patil, Nagaraj  
dc.contributor.author
Detrembleur, Christophe  
dc.contributor.author
Marcilla, Rebeca  
dc.contributor.author
Mecerreyes, David  
dc.date.available
2021-10-05T14:25:14Z  
dc.date.issued
2020-08-02  
dc.identifier.citation
Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-3942  
dc.identifier.issn
2398-4902  
dc.identifier.uri
http://hdl.handle.net/11336/142669  
dc.description.abstract
Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
Proton trap  
dc.subject
Redox active  
dc.subject
Lithium batteries  
dc.subject
Catechol  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-29T14:50:53Z  
dc.journal.volume
4  
dc.journal.number
8  
dc.journal.pagination
3934-3942  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.description.fil
Fil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.description.fil
Fil: Casado, Nerea. Universidad del País Vasco. Polymat; España  
dc.description.fil
Fil: Goujon, Nicolas. Universidad del País Vasco. Polymat; España  
dc.description.fil
Fil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; España  
dc.description.fil
Fil: Patil, Nagaraj. Instituto Imdea Energia; España  
dc.description.fil
Fil: Detrembleur, Christophe. Universidad de Lieja; Bélgica  
dc.description.fil
Fil: Marcilla, Rebeca. Instituto Imdea Energia; España  
dc.description.fil
Fil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; España  
dc.journal.title
Sustainable Energy and Fuels  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00531B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/D0SE00531B