Mostrar el registro sencillo del ítem

dc.contributor.author
Domingos, Renato M.  
dc.contributor.author
Teixeira, Raphael D.  
dc.contributor.author
Zeida Camacho, Ari Fernando  
dc.contributor.author
Agudelo Suarez, William Armando  
dc.contributor.author
Barros, Thiago  
dc.contributor.author
Da Silva Neto, José F.  
dc.contributor.author
Vieira, Plínio S.  
dc.contributor.author
Murakami, Mario T.  
dc.contributor.author
Farah, Chuck S.  
dc.contributor.author
Estrin, Dario Ariel  
dc.contributor.author
Netto, Luis E. S.  
dc.date.available
2021-10-01T19:47:18Z  
dc.date.issued
2020-05  
dc.identifier.citation
Domingos, Renato M.; Teixeira, Raphael D.; Zeida Camacho, Ari Fernando; Agudelo Suarez, William Armando; Barros, Thiago; et al.; Substrate and product-assisted catalysis: Molecular aspects behind structural switches along organic hydroperoxide resistance protein catalytic cycle; American Chemical Society; ACS Catalysis; 10; 12; 5-2020; 6587-6602  
dc.identifier.issn
2155-5435  
dc.identifier.uri
http://hdl.handle.net/11336/142306  
dc.description.abstract
Bacteria contain a large repertoire of enzymes to decompose oxidants, such as hydroperoxides. Among them, organic hydroperoxide resistance (Ohr) proteins play central roles in the bacterial response to fatty acid peroxides and peroxynitrite (Alegria et al. Ohr Plays a Central Role in Bacterial Responses against Fatty Acid Hydroperoxides and Peroxynitrite. Proc. Natl. Acad. Sci. USA 2017, 114, E132) and present distinct structural and biochemical features in comparison with mammalian Cys-based peroxidases. The molecular events associated with the high reactivity of Ohr enzymes toward hydroperoxides and its reducibility by lipoylated proteins (or dihydrolipoamide) are still elusive. Here, we report six crystallographic structures of two Ohr paralogs from Chromobacterium violaceum, including the complex with dihydrolipoamide. Comparison of these six structures with the other few Ohr structures available in public databases revealed conserved features in the active site, such as a hydrophobic collar. Together with classical, hybrid quantum-classical molecular dynamics simulations and point mutation analyses, we show that Ohr undergoes several structural switches to allow an energetically accessible movement of the loop containing the catalytic Arg, which is stabilized in the closed state when the catalytic Cys is reduced. The structure of Ohr in complex with its substrate (dihydrolipoamide) together with molecular simulations allowed us to characterize the reductive half of the catalytic pathway in detail. Notably, dihydrolipoamide favors Arg-loop closure, thereby assisting enzyme turnover. The conserved physicochemical properties of the Ohr active site and the mechanisms revealed here provide relevant information for the identification of inhibitors with therapeutic potential.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIHYDROLIPOAMIDE  
dc.subject
FATTY ACID HYDROPEROXIDES  
dc.subject
LIPOYLATED PROTEINS  
dc.subject
OHR/OSMC  
dc.subject
THIOL-DEPENDENT PEROXIDASES  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Substrate and product-assisted catalysis: Molecular aspects behind structural switches along organic hydroperoxide resistance protein catalytic cycle  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:39:40Z  
dc.journal.volume
10  
dc.journal.number
12  
dc.journal.pagination
6587-6602  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Domingos, Renato M.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Teixeira, Raphael D.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Zeida Camacho, Ari Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina  
dc.description.fil
Fil: Agudelo Suarez, William Armando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Barros, Thiago. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Da Silva Neto, José F.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Vieira, Plínio S.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Murakami, Mario T.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Farah, Chuck S.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Netto, Luis E. S.. Universidade de Sao Paulo; Brasil  
dc.journal.title
ACS Catalysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/acscatal.0c01257  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.0c01257