Mostrar el registro sencillo del ítem

dc.contributor.author
Salazar, Germán Ariel  
dc.contributor.author
Gueymard, Christian  
dc.contributor.author
Galdino, Janis Bezerra  
dc.contributor.author
de Castro Vilela, Olga  
dc.contributor.author
Fraidenraich, Naum  
dc.date.available
2021-09-30T02:15:31Z  
dc.date.issued
2020-01  
dc.identifier.citation
Salazar, Germán Ariel; Gueymard, Christian; Galdino, Janis Bezerra; de Castro Vilela, Olga; Fraidenraich, Naum; Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil; Pergamon-Elsevier Science Ltd; Renewable & Sustainable Energy Reviews; 117; 109478; 1-2020; 1-15  
dc.identifier.issn
1364-0321  
dc.identifier.uri
http://hdl.handle.net/11336/141965  
dc.description.abstract
This study analyzes five years of 1-min solar global horizontal irradiance (GHI) and direct normal irradiance (DNI) observations obtained at Petrolina (northeast Brazil). Quality-assured hourly and daily averages are obtained after applying filters and methodologies based on a Baseline Solar Radiation Network (BSRN) qualitycontrol procedure. To calculate correct hourly averages, a minimum fraction of 20% of valid GHI or DNI minutely data is needed, as well as at least 60% of valid days to calculate correct daily-mean monthly values. An asymmetric diurnal pattern is found in GHI and DNI during all months, attributed to consistently higher cloudiness in the morning. The quality-assured hourly and monthly-mean GHI and DNI time series are compared to estimates from 11 solar databases regularly used in solar resource assessment studies: CAMS, CERES, ERA5, INPE, MERRA-2, Meteonorm, NASA-POWER, NSRDB, SARAH, SWERA-BR, and SWERA-US. For hourly GHI values, a range of RMS differences is found between the best (CAMS, 17.3%) and the worst (MERRA-2, 38.9%) results. The latter database is also affected by a larger bias (18.7%) than CAMS (4%). Larger RMS differences are found with hourly DNI, in a range extending from 37% (CAMS) to 63.4% (ERA5). Biases are all above 12%, except for CERES ( 1%). For long-term mean-monthly GHI results, low biases of less than 1% are obtained with CAMS, CERES and NASA-POWER, whereas MERRA-2 overestimates (13%). Larger biases are found for meanmonthly DNI, spanning between CAMS (3%) and Meteonorm ( 18.4%). Overall, CAMS appears the most consistent solar database for long-term irradiance time series at Petrolina. The significant differences found here between modeled databases are larger than expected, and underline the importance of regional validation studies like this one to decrease the incidence of uncertainties in solar resource assessments on the design and performance of solar energy projects.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Irradiancia solar  
dc.subject
Validación  
dc.subject
Control de calidad de datos  
dc.subject
Evaluación del recurso solar  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-27T20:29:53Z  
dc.journal.volume
117  
dc.journal.number
109478  
dc.journal.pagination
1-15  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Salazar, Germán Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina. Universidade Federal de Pernambuco; Brasil  
dc.description.fil
Fil: Gueymard, Christian. Solar Consulting Services; Estados Unidos  
dc.description.fil
Fil: Galdino, Janis Bezerra. Universidade Federal de Pernambuco; Brasil  
dc.description.fil
Fil: de Castro Vilela, Olga. Universidade Federal de Pernambuco; Brasil  
dc.description.fil
Fil: Fraidenraich, Naum. Universidade Federal de Pernambuco; Brasil  
dc.journal.title
Renewable & Sustainable Energy Reviews  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.rser.2019.109478  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1364032119306860