Mostrar el registro sencillo del ítem

dc.contributor.author
Milosavljevic, Predrag  
dc.contributor.author
Marchetti, Alejandro Gabriel  
dc.contributor.author
Cortinovis, Andrea  
dc.contributor.author
Faulwasser, Timm  
dc.contributor.author
Mercangöz, Mehmet  
dc.contributor.author
Bonvin, Dominique  
dc.date.available
2021-09-29T18:42:45Z  
dc.date.issued
2020-08  
dc.identifier.citation
Milosavljevic, Predrag; Marchetti, Alejandro Gabriel; Cortinovis, Andrea; Faulwasser, Timm; Mercangöz, Mehmet; et al.; Real-time optimization of load sharing for gas compressors in the presence of uncertainty; Elsevier; Applied Energy; 272; 8-2020; 1-13; 114883  
dc.identifier.issn
0306-2619  
dc.identifier.uri
http://hdl.handle.net/11336/141927  
dc.description.abstract
This paper investigates the problem of load-sharing optimization of gas compressors in the presence of uncertainty. The objective is to operate a set of compressor units in an energy-efficient way, while at the same time meeting a varying load demand. The main challenge is the fact that the available models, and in particular the compressor efficiency maps, carry a significant amount of uncertainty. For this task, real-time optimization (RTO) techniques that rely on plant measurements and correct the model are available in the literature. This paper is tailored to the application of RTO to the compressor load-sharing optimization problem. An adaptive optimization approach that guarantees optimal plant operation upon convergence is used. To this end, we use appropriate measurements to estimate plant gradients and correct the model in such a way that it exhibits the same optimality conditions as the plant. This way, the challenge is shifted from having an accurate model to being able to estimate experimental gradients accurately. We show how the specific problem structure can be exploited for the purpose of efficient estimation of plant gradients. We consider both parallel and serial compressor configurations as well as operation close to surge constraints. The simulation of an industrial case study demonstrates the efficiency of the proposed approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ADAPTIVE OPTIMIZATION  
dc.subject
GAS COMPRESSORS  
dc.subject
INTERCONNECTED SYSTEMS  
dc.subject
OPTIMAL LOAD SHARING  
dc.subject
REAL-TIME OPTIMIZATION  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Real-time optimization of load sharing for gas compressors in the presence of uncertainty  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-19T19:57:22Z  
dc.journal.volume
272  
dc.journal.pagination
1-13; 114883  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Milosavljevic, Predrag. Ecole Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Ecole Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Cortinovis, Andrea. Abb Group; Suiza  
dc.description.fil
Fil: Faulwasser, Timm. Ecole Polytechnique Fédérale de Lausanne; Suiza. Universität Dortmund; Alemania  
dc.description.fil
Fil: Mercangöz, Mehmet. Abb Group; Suiza  
dc.description.fil
Fil: Bonvin, Dominique. Ecole Polytechnique Fédérale de Lausanne; Suiza  
dc.journal.title
Applied Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apenergy.2020.114883  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0306261920303950