Artículo
Surface engineering of graphene through heterobifunctional supramolecular-covalent scaffolds for rapid COVID-19 biomarker detection
Piccinini, Esteban
; Allegretto, Juan Alejandro
; Scotto, Juliana
; Cantillo, Agustin; Fenoy, Gonzalo Eduardo
; Marmisollé, Waldemar Alejandro
; Azzaroni, Omar
Fecha de publicación:
02/09/2021
Editorial:
American Chemical Society
Revista:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Graphene is a two-dimensional semiconducting material whose application for diagnostics has been a real game-changer in terms of sensitivity and response time, variables of paramount importance to stop the COVID-19 spreading. Nevertheless, strategies for the modification of docking recognition and antifouling elements to obtain covalent-like stability without the disruption of the graphene band structure are still needed. In this work, we conducted surface engineering of graphene through heterofunctional supramolecular-covalent scaffolds based on vinylsulfonated-polyamines (PA-VS). In these scaffolds, one side binds graphene through multivalent π?π interactions with pyrene groups, and the other side presents vinylsulfonated pending groups that can be used for covalent binding. The construction of PA-VS scaffolds was demonstrated by spectroscopic ellipsometry, Raman spectroscopy, and contact angle measurements. The covalent binding of −SH, −NH2, or −OH groups was confirmed, and it evidenced great chemical versatility. After field-effect studies, we found that the PA-VS-based scaffolds do not disrupt the semiconducting properties of graphene. Moreover, the scaffolds were covalently modified with poly(ethylene glycol) (PEG), which improved the resistance to nonspecific proteins by almost 7-fold compared to the widely used PEG-monopyrene approach. The attachment of recognition elements to PA-VS was optimized for concanavalin A (ConA), a model lectin with a high affinity to glycans. Lastly, the platform was implemented for the rapid, sensitive, and regenerable recognition of SARS-CoV-2 spike protein and human ferritin in lab-made samples. Those two are the target molecules of major importance for the rapid detection and monitoring of COVID-19-positive patients. For that purpose, monoclonal antibodies (mAbs) were bound to the scaffolds, resulting in a surface coverage of 436 ± 30 ng/cm2. KD affinity constants of 48.4 and 2.54 nM were obtained by surface plasmon resonance (SPR) spectroscopy for SARS-CoV-2 spike protein and human ferritin binding on these supramolecular scaffolds, respectively.
Palabras clave:
heterofunctional scaffold
,
graphene
,
supramolecular
,
antibody
,
COVID-19
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Piccinini, Esteban; Allegretto, Juan Alejandro; Scotto, Juliana; Cantillo, Agustin; Fenoy, Gonzalo Eduardo; et al.; Surface engineering of graphene through heterobifunctional supramolecular-covalent scaffolds for rapid COVID-19 biomarker detection; American Chemical Society; ACS Applied Materials & Interfaces; 13; 36; 2-9-2021; 43696-43707
Compartir
Altmétricas